China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (12): 2960-2967.DOI: 10.3969/j.issn.1004-132X.2025.12.019
Feng YIN1(
), Xin HUANG1, Jiayi ZHOU2
Received:2025-01-17
Online:2025-12-25
Published:2025-12-31
Contact:
Feng YIN
通讯作者:
印峰
作者简介:印峰*(通信作者),男,1983年生,博士、副教授。研究方向为机器人技术。E-mail:yinfeng83@126.com。
基金资助:CLC Number:
Feng YIN, Xin HUANG, Jiayi ZHOU. High-precision Computation of Inverse Kinematics for Redundant Robots Based on Flow Model[J]. China Mechanical Engineering, 2025, 36(12): 2960-2967.
印峰, 黄欣, 周佳义. 基于流模型的冗余机器人逆运动学解高精度计算[J]. 中国机械工程, 2025, 36(12): 2960-2967.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.12.019
| 模型 | MMD 得分 |
|---|---|
| INN | 0.061 |
| cINN | 0.058 |
| CGAN(Cycle IK) | 0.037 |
| CNL(IKFLOW) | 0.033 |
| CNF(NOC-IK) | 0.031 |
Tab.1 MMD scores of generative networks
| 模型 | MMD 得分 |
|---|---|
| INN | 0.061 |
| cINN | 0.058 |
| CGAN(Cycle IK) | 0.037 |
| CNL(IKFLOW) | 0.033 |
| CNF(NOC-IK) | 0.031 |
| 机器人 | 隐藏 层数 | 每个解的 时间/ms | 平均L2位置 误差/cm | 平均角度 误差/(º) | 自碰撞 概率/% |
|---|---|---|---|---|---|
| Panda | 6 | 3.3376 | 1.4405 | 8.4781 | 6.052 |
| Panda | 12 | 6.3605 | 0.6826 | 2.2817 | 4.564 |
| Fetch | 12 | 6.1903 | 1.4507 | 0.7864 | 2.976 |
| Fetch | 16 | 7.29508 | 0.9792 | 3.6491 | 2.192 |
| Iiwa7 | 12 | 10.0659 | 2.0168 | 3.6801 | 0.028 |
Tab.2 IKFLOW inverse kinematics solution results
| 机器人 | 隐藏 层数 | 每个解的 时间/ms | 平均L2位置 误差/cm | 平均角度 误差/(º) | 自碰撞 概率/% |
|---|---|---|---|---|---|
| Panda | 6 | 3.3376 | 1.4405 | 8.4781 | 6.052 |
| Panda | 12 | 6.3605 | 0.6826 | 2.2817 | 4.564 |
| Fetch | 12 | 6.1903 | 1.4507 | 0.7864 | 2.976 |
| Fetch | 16 | 7.29508 | 0.9792 | 3.6491 | 2.192 |
| Iiwa7 | 12 | 10.0659 | 2.0168 | 3.6801 | 0.028 |
| 机器人 | 隐藏 层数 | 每个解的 时间/ms | 平均L2位置 误差/cm | 平均角度 误差/(º) | 自碰撞 概率/% |
|---|---|---|---|---|---|
| Panda | 6 | 2.0621 | 1.0177 | 5.0036 | 2.330 |
| Panda | 12 | 3.9418 | 0.6808 | 2.1554 | 1.584 |
| Fetch | 12 | 3.9242 | 1.4843 | 0.6724 | 3.004 |
| Fetch | 16 | 5.1982 | 0.8601 | 1.8602 | 1.660 |
| Iiwa7 | 12 | 7.9731 | 1.3409 | 3.1826 | 0 |
Tab.3 NOC-IK(CNF)inverse kinematics solution results
| 机器人 | 隐藏 层数 | 每个解的 时间/ms | 平均L2位置 误差/cm | 平均角度 误差/(º) | 自碰撞 概率/% |
|---|---|---|---|---|---|
| Panda | 6 | 2.0621 | 1.0177 | 5.0036 | 2.330 |
| Panda | 12 | 3.9418 | 0.6808 | 2.1554 | 1.584 |
| Fetch | 12 | 3.9242 | 1.4843 | 0.6724 | 3.004 |
| Fetch | 16 | 5.1982 | 0.8601 | 1.8602 | 1.660 |
| Iiwa7 | 12 | 7.9731 | 1.3409 | 3.1826 | 0 |
| 方法 | 每个解的时间/ms | 输出自碰撞解个数 |
|---|---|---|
| FCL | 1.5855 | 0 |
| 7.4157 | 0 | |
| MLP | 0.2651 | 0 |
Tab.4 Self-collision detection results
| 方法 | 每个解的时间/ms | 输出自碰撞解个数 |
|---|---|---|
| FCL | 1.5855 | 0 |
| 7.4157 | 0 | |
| MLP | 0.2651 | 0 |
| 模块 | 均方误差/cm | 平均自碰撞 概率/% | 每个解的 时间/ms |
|---|---|---|---|
| CNF | 0.682 | 2.572 | 5.9743 |
| CNF+L-M | 0.001 | 3.135 | 7.3429 |
| NOC-IK | 0.001 | 0.077 | 9.9425 |
Tab.5 Experimental results of ablation
| 模块 | 均方误差/cm | 平均自碰撞 概率/% | 每个解的 时间/ms |
|---|---|---|---|
| CNF | 0.682 | 2.572 | 5.9743 |
| CNF+L-M | 0.001 | 3.135 | 7.3429 |
| NOC-IK | 0.001 | 0.077 | 9.9425 |
| 模型 | 均方误差/cm | 平均自碰撞概率/% | 每个解的 时间/ms |
|---|---|---|---|
| B-NAFs | 3.871 | 0.300 | 0.6800 |
| BP | 0.980 | 16.7800 | |
| ResNet-BP | 0.600 | 8.7000 | |
| IKFLOW | 0.772 | 6.732 | 6.7322 |
| CycleIK[ | 0.570 | 0.4100 | |
| CycleIK-Gaikpy[ | 0.051 | 20.0071 | |
| CNN | 0.012 | 12.9600 | |
| NOC-IK | 0.001 | 0.077 | 9.9425 |
Tab.6 The results of comparison with other models
| 模型 | 均方误差/cm | 平均自碰撞概率/% | 每个解的 时间/ms |
|---|---|---|---|
| B-NAFs | 3.871 | 0.300 | 0.6800 |
| BP | 0.980 | 16.7800 | |
| ResNet-BP | 0.600 | 8.7000 | |
| IKFLOW | 0.772 | 6.732 | 6.7322 |
| CycleIK[ | 0.570 | 0.4100 | |
| CycleIK-Gaikpy[ | 0.051 | 20.0071 | |
| CNN | 0.012 | 12.9600 | |
| NOC-IK | 0.001 | 0.077 | 9.9425 |
| [1] | 欧群文,贠超,杨学兵,等.基于神经网络的冗余机械臂运动学逆解研究[J].机电工程,2016,33(6):663-667. |
| Qunwen OU, YUN Chao, YANG Xuebing, et al. Algorithm Based on Neural Network for Inverse Kinematics of Redundant Manipulator[J] Journal of Mechanical & Electrical Engineering, 2016,33 (6): 663-667. | |
| [2] | 李进,刘璇,张建华,等.基于RBF神经网络间接求取运动学逆解的研究[J].机床与液压,2019,47(23):32-37. |
| LI Jin, LIU Xuan, ZHANG Jianhua, et al. Research on Indirect Solution of Inverse Kinematics Based on RBF Neural Network[J]. Machine Tool & Hydraulics, 2019,47(23):32-37. | |
| [3] | 刘世平,曹俊峰,孙涛,等.基于BP神经网络的冗余机械臂逆运动学分析[J].中国机械工程, 2019,30(24): 2974-2977. |
| LIU Shiping, CAO Junfeng, SUN Tao, et al. Inverse Kinematics Analysis of Redundant Manipulators Based on BP Neural Network[J]. China Mechanical Engineering,2019,30(24):2974-2977. | |
| [4] | 刘世平,夏文杰,陈萌,等.基于卷积神经网络的冗余机械臂运动学逆解求解[J].载人航天,2022,28(1):10-15. |
| LIU Shiping, XIA Wenjie, CHEN Meng, et al. Inverse Kinematics Solution of Redundant Manipulator Based on Convolution Neural Networks[J]. Manned Spaceflight,2022,28(1):10-15. | |
| [5] | 石建平.基于粒子群优化算法的冗余机械臂运动学逆解[J].贵阳学院学报(自然科学版),2020,15(3):48-52. |
| SHI Jianping. Inverse Kinematics Solution of Redundant Manipulator Based on Particle Swarm Optimization Algorithm[J]. Journal of Guiyang University(Natural Sciences),2020,15(3):48-52. | |
| [6] | ARDIZZONE L, KRUSE J, WIRKERT S, et al. Analyzing Inverse Problems with Invertible Neural Networks[C]∥International Conference on Learning Representations (ICLR).New Orleans, 2019:1808.04730. |
| [7] | GARG S, DUDEJA S, RASTOGI V. Inverse Kinematics of Tendon Driven Continuum Robots Using Invertible Neural Network[C]∥2022 2nd International Conference on Computers and Automation (CompAuto). Paris, 2022: 82-86. |
| [8] | AMES B, MORGAN J, KONIDARIS G. IKFLOW: Generating Diverse Inverse Kinematics Solutions[J]. IEEE Robotics and Automation Letters, 2022, 7(3): 7177-7184. |
| [9] | PAPAMAKARIOS G, NALISNICK E, JIMENEZ REZENDE D, et al. Normalizing Flows for Probabilistic Modeling and Inference[J]. Journal of Machine Learning Research,2019, 57(22):64. |
| [10] | KINGMA D P, DHARIWAL P. GLOW: Generative Flow with Invertible 1×1 Convolutions[C]∥The 32nd International Conference on Neural Information Processing Systems (NIPS'18). Red Hook, 2018: 10236-10245. |
| [11] | BEESON P, AMES B. TRAC-IK: an Open-source Library for Improved Solving of Generic Inverse Kinematics[C]∥2015 IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids). Seoul, 2015: 928-935. |
| [12] | HABEKOST J G, STRAHL E, ALLGEUER P, et al. CycleIK: Neuro-inspired Inverse Kinematics[C]∥ International Conference on Artificial Neural Networks. Heraklion, 2023: 457-470. |
| [13] | ZHU J Y, PARK T, ISOLA P, et al. Unpaired Image-to-image Translation Using Cycle-consistent Adversarial Networks [C] ∥Proceedings of the IEEE International Conference on Computer Vision. Venice, 2017: 2223-2232. |
| [14] | KERZEL M, ALLGEUER P, STRAHL E, et al. Nicol: a Neuro-inspired Collaborative Semi-humanoid Robot that Bridges Social Interaction and Reliable Manipulation[J].IEEE Access,2023, 11: 123531-123542. |
| [15] | DEMBY’S J, GAO Y, DESOUZA G N. A Study on Solving the Inverse Kinematics of Serial Robots Using Artificial Neural Network and Fuzzy Neural Network[C]∥2019 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).New Orleans, 2019: 1-6. |
| [16] | GILBERT E G, FOO C P. Computing the Distance between General Convex Objects in Three-dimensional Space[J]. IEEE Transactions on Robotics and Automation, 1990, 6(1): 53-61. |
| [17] | SAFEEA M, NETO P, BEAREE R. Efficient Calculation of Minimum Distance Between Capsules and Its Use in Robotics[J]. IEEE Access, 2018, 7: 5368-5373. |
| [18] | NVIDIA GPU Technology Conference GTC). Warp: a High-performance Python Framework for GPU Simulation and Graphics[EB/OL].(2022-03-31)[2025-01-03].. |
| [19] | KIM H, LEE H, KANG W H, et al. Softflow: Probabilistic Framework for Normalizing Flow on Manifolds[J]. Neural Information Processing Systems, 2020, 33: 16388-16397. |
| [20] | PADMANABHA G A, ZABARAS N. Solving Inverse Problems Using Conditional Invertible Neural Networks[J]. Journal of Computational Physics, 2021, 433: 110194. |
| [21] | 李佳,邱伟,邹劭芬.基于改进LM-GN算法的磁性目标定位方法研究[J].数字海洋与水下攻防, 2023,6(5): 552-561. |
| LI Jia, QIU Wei, ZOU Shaofen. Research on Magnetic Target Localization Based on Improved LM-GN Algorithm[J]. Digital Ocean & Underwater Warfare, 2023,6(5):552-561. | |
| [22] | 李国民,宿梦瑶,朱代先.光束平差法中的一种改进LM算法[J].西安科技大学学报,2022,42(1):152-159. |
| LI Guoming, SU Mengyao, ZHU Daixian. An Improved LM Algorithm in Bundle Adjustment[J]. Journal of Xi'an University of Science and Technology, 2022,42(1): 152-159. | |
| [23] | RAKITA D, MUTLU B, GLEICHER M. RelaxedIK: Real-time Synthesis of Accurate and Feasible Robot Arm Motion[C]∥Robotics: Science and Systems (RSS 2018.Pittsburgh, 2018:46968269. |
| [1] | Xuhao WANG, Wolong SHENG, Mengli WU, Yilong XU, Xiaowei ZHAO, Yiran CAO. Design and Kinematics Modeling of Extensible Snake-like Manipulators [J]. China Mechanical Engineering, 2025, 36(12): 2885-2893. |
| [2] | Jiaxiang DONG, Quanquan LIU, Xiping HU, Xuezhi ZHAO. Kinematic Modeling of a Novel Rigid⁃Flexible Hybrid Continuum Robots [J]. China Mechanical Engineering, 2025, 36(11): 2678-2684. |
| [3] | WANG Zhiqiang1, HAN Jianhai1, 2, 3, LI Xiangpan1, 2, GUO Bingjing1, 2, DU Ganqin4. Cartesian Space Screw Linear Interpolation Trajectory Planning for Redundant Robots [J]. China Mechanical Engineering, 2025, 36(01): 104-112. |
| [4] | CHEN Zhuofan, ZHOU Kun, QIN Feifei, WANG Binrui. Inverse Kinematics Solution of Robots Based on IQPSO Algorithm [J]. China Mechanical Engineering, 2024, 35(02): 293-304. |
| [5] | RONG Yu, DOU Tianci, ZHANG Xingchao, ZHANG LeiZ, HAO Jingyu. A Real-time Control Method for Optimal Overall Performances of Planar Redundant Robots [J]. China Mechanical Engineering, 2022, 33(16): 1928-1939. |
| [6] | LIU Xuemei, FENG Yan, YANG Zhen, LI Aiping, LU Junguo. IAFSA for Solving Inverse Kinematics of Redundant Robotic Spraying System [J]. China Mechanical Engineering, 2022, 33(11): 1317-1323. |
| [7] | LIU Xiuying, ZHANG Jianjun, LIU Chenglei, NIU Jianye, QI Kaicheng, GUO Shijie. Kinematic Parameter Optimization of Workspace-based Generalized Spherical Parallel Robots for Ankle Joint Rehabilitation [J]. China Mechanical Engineering, 2021, 32(16): 1921-1929. |
| [8] | ZHANG Yue, DONG Lei, HUAN Ronghua, HUANG Zhilong. Design and Kinematic Analysis of Crawler-type Pipeline Endoscope Robots for Wind Turbine Blades#br# [J]. China Mechanical Engineering, 2021, 32(15): 1884-1889. |
| [9] | JI Yangzhen, HOU Li, LUO Lan, LUO Pei, LIU Xubin, LIANG Shuang. Solution of Inverse Kinematics for 6R Robots Based on Combinatorial Optimization Algorithm#br# [J]. China Mechanical Engineering, 2021, 32(10): 1222-1232. |
| [10] | LIU Shiping;CAO Junfeng;SUN Tao;HU Jiangbo;FU Yan;ZHANG Shuai;LI Shiqi. Inverse Kinematics Analysis of Redundant Manipulators Based on BP Neural Network [J]. China Mechanical Engineering, 2019, 30(24): 2974-2977,2985. |
| [11] | XIAO Fan;LI Guang;YOU Yulong. Multiple Module Neural Network Solving for Inverse Kinematics of Space 3R Manipulators [J]. China Mechanical Engineering, 2019, 30(10): 1233-1238. |
| [12] | PEI Jiufang;XU Dezhang;WANG Hai. Inverse Kinematics Analyses of 3-finger Robot Dexterous Hand Based on Screw Theory [J]. China Mechanical Engineering, 2017, 28(24): 2975-2980. |
| [13] | Xia Boxiong, Du Jun. Reconfigurable Robot Modeling and Experiments Based on 5-axis Machining System for Complex Parts [J]. China Mechanical Engineering, 2014, 25(9): 1208-1213. |
| [14] | Yang Zhen, Yang Wenyu, Zhang Xiaoping. Singularity Robustness Algorithm for Robot Inverse Kinematics [J]. China Mechanical Engineering, 2014, 25(8): 995-1000. |
| [15] | WEI Xiu-Ting-1, LI Gang-1, DU Jiang-2, CHEN Qian-Qian-1. Kinematic Analysis and Workspace Calculation of a 6-PTRT Manipulator for Chamfering Gear Addendum [J]. China Mechanical Engineering, 2013, 24(6): 750-754. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||