[1]ZGR E, MEZOUAR Y. Kinematic Modeling and Control of a Robot Arm Using Unit Dual Quaternions[J]. Robotics and Autonomous Systems, 2016, 77:66-73.
[2]ABAUNZA H, CHANDRA R, ZGR E, et al. Kinematic Screws and Dual Quaternion Based Motion Controllers[J]. Control Engineering Practice, 2022, 128:105325.
[3]葛为民, 宇旭东, 王肖锋, 等. 基于对偶四元数的机械臂运动学建模及分析[J]. 机械传动, 2018, 42(7):112-117.
GE Weimin, YU Xudong, WANG Xiaofeng, et al. Kinematics Modeling and Analysis of Manipulator Based on Dual Quaternion[J]. Journal of Mechanical Transmission, 2018, 42(7):112-117.
[4]陈良港, 张方, 张建光, 等. 基于对偶四元数移动机械臂运动学建模与控制[J]. 科技创新与应用, 2022, 12(5):1-5.
CHEN Lianggang, ZHANG Fang, ZHANG Jianguang, et al. Kinematics Modeling and Control of Mobile Manipulator Based on Dual Quaternion[J]. Technology Innovation and Application, 2022, 12(5):1-5.
[5]KAVAN L, COLLINS S,RA J, et al. Geometric Skinning with Approximate Dual Quaternion Blending[J]. ACM Transactions on Graphics, 2008, 27(4):105.
[6]LE B H, HODGINS J K. Real-time Skeletal Skinning with Optimized Centers of Rotation[J]. ACM Transactions on Graphics, 2016, 35(4):1-10.
[7]钱萍, 王惠南. 基于对偶四元数的航天器交会对接位姿双目视觉测量算法[J]. 宇航学报, 2013, 34(1):32-38.
QIAN Ping, WANG Huinan. A Binocular Vision Algorithm Based on Dual Quaternion for Relative Position and Attitude Determination of RVD Spacecrafts[J]. Journal of Astronautics, 2013, 34(1):32-38.
[8]翟洪民. 基于对偶四元数的航天器近距离接近位姿同步规划与控制[D]. 哈尔滨:哈尔滨工业大学, 2021.
ZHAI Hongmin. Synchronous Planning and Control of Spacecraft’s Close Approach Position and Attitude Based on Dual Quaternion[D].Harbin:Harbin Institute of Technology, 2021.
[9]WANG Xiangke, ZHU Huayong. On the Comparisons of Unit Dual Quaternion and Homogeneous Transformation Matrix[J]. Advances in Applied Clifford Algebras, 2014, 24(1):213-229.
[10]戴建生. 机构学与旋量理论的历史渊源以及有限位移旋量的发展[J]. 机械工程学报, 2015, 51(13):13-26.
DAI Jiansheng. Historical Relation between Mechanisms and Screw Theory and the Development of Finite Displacement Screws[J]. Journal of Mechanical Engineering, 2015, 51(13):13-26.
[11]黄晓华, 王兴成. 机器人动力学的李群表示及其应用[J]. 中国机械工程, 2007, 18(2):201-205.
HUANG Xiaohua, WANG Xingcheng. Lie Group Representation of Robot Dynamics and Its Applications[J]. China Mechanical Engineering, 2007, 18(2):201-205.
[12]裴九芳, 许德章, 王海. 基于旋量理论的三指机器人灵巧手逆运动学分析[J]. 中国机械工程, 2017, 28(24):2975-2980.
PEI Jiufang, XU Dezhang, WANG Hai. Inverse Kinematics Analyses of 3-finger Robot Dexterous Hand Based on Screw Theory[J]. China Mechanical Engineering, 2017, 28(24):2975-2980.
[13]邵兵, 吴洪涛, 程世利, 等. 基于李群李代数的主被动关节机器人动力学及控制[J]. 中国机械工程, 2010, 21(3):253-257.
SHAO Bing, WU Hongtao, CHENG Shili, et al. Dynamics and Control of Robot with Active and Passive Joints Using Lie Groups and Lie Algebras[J]. China Mechanical Engineering, 2010, 21(3):253-257.
[14]VILHENA ADORNO B. Robot Kinematic Modeling and Control Based on Dual Quaternion Algebra — Part I:Fundamentals[Z/OL]. 2017[2022-11-06]. https:∥hal.archives-ouvertes.fr/hal-01478225.
[15]ADORNO B V,MARQUES MARINHO M. DQ Robotics:a Library for Robot Modeling and Control[J]. IEEE Robotics & Automation Magazine, 2021, 28(3):102-116.
[16]LECHUGA-GUTIERREZ L, MACIAS-GARCIA E, MARTNEZ-TERN G, et al. IterativeInverse Kinematics for Robot Manipulators Using Quaternion Algebra and Conformal Geometric Algebra[J]. Meccanica, 2022, 57(6):1413-1428.
[17]AHMED A, YUMeng, CHEN Feifei. Inverse Kinematic Solution of 6-DOF Robot-arm Based on Dual Quaternions and Axis Invariant Methods[J]. Arabian Journal for Science and Engineering, 2022, 47(12):15915-15930.
[18]QIAO Shuguang, LIAO Qizheng, WEI Shimin, et al. Inverse Kinematic Analysis of the General 6R Serial Manipulators Based on Double Quaternions[J]. Mechanism and Machine Theory, 2010, 45(2):193-199.
[19]ZHAO Zhiyong, WANG Tao, WANG Dongqing. Inverse Kinematic Analysis of the General 6R Serial Manipulators Based on Unit Dual Quaternion and Dixon Resultant[C]∥2017 Chinese Automation Congress (CAC). IEEE, 2017:2646-2650.
[20]WANG Hengsheng, ZHAN Deyou, HUANG Pinglun, et al. InverseKinematics of a Heavy Duty Manipulator with 6-DOF Based on Dual Quaternion[J]. Journal of Central South University, 2015, 22(7):2568-2577.
[21]KENWRIGHT B. Inverse Kinematics with Dual-quaternions, Exponential-maps, and Joint Limits[J]. arXiv, 2022:2211.01466.
[22]CHEN Qingcheng, ZHU Shiqiang, ZHANG Xuequn. Improved Inverse Kinematics Algorithm Using Screw Theory for a Six-DOF Robot Manipulator[J]. International Journal of Advanced Robotic Systems, 2015, 12(10):140.
[23]DANTAM N T.Robust and Efficient Forward, Differential, and Inverse Kinematics Using Dual Quaternions[J]. The International Journal of Robotics Research, 2021, 40(10/11):1087-1105.
[24]任敬轶, 孙汉旭. 一种新颖的笛卡儿尔空间轨迹规划方法[J]. 机器人, 2002, 24(3):217-221.
REN Jingyi, SUN Hanxu. A Novel Method of Trajectory Planning in Cartesian Space[J]. Robot, 2002, 24(3):217-221.
[25]金荣玉, 耿云海. 空间机器人动力学奇异回避的笛卡尔轨迹规划[J]. 宇航学报, 2020, 41(8):989-999.
JIN Rongyu, GENG Yunhai. Cartesian Trajectory Planning of Free-floating Space Robot with Dynamic Singularities Avoidance[J]. Journal of Astronautics, 2020, 41(8):989-999.
[26]李振娜, 王涛, 王斌锐, 等. 基于带约束S型速度曲线的机械手笛卡儿尔空间轨迹规划[J]. 智能系统学报, 2019, 14(4):655-661.
LI Zhenna, WANG Tao, WANG Binrui, et al. Trajectory Planning for Manipulator in Cartesian Space Based on Constrained S-curve Velocity[J]. CAAI Transactions on Intelligent Systems, 2019, 14(4):655-661.
[27]SARKER A, SINHA A, CHAKRABORTY N. On Screw Linear Interpolation for Point-to-point Path Planning[C]∥2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Las Vegas, 2020:9480-9487.
[28]KAVAN L, COLLINS S, RA J, et al. Skinning with Dual Quaternions[C]∥Proceedings of the 2007 Symposium on Interactive 3D graphics and games. New York, 2007:39-46.[LinkOut]
[29]KENWRIGHT B. Dual-Quaternion Interpolation[J]. arXiv, 2023:2303.13395.
[30]SOL J, DERAY J, ATCHUTHAN D. A micro Lie theory for state estimation in robotics[J]. arXiv, 2018:1812.01537.
[31]LYNCH K M. Modern Robotics:Mechanics, Planning, and Control[M]. New York, NY:Cambridge University Press.
|