China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (10): 2329-2334.DOI: 10.3969/j.issn.1004-132X.2025.10.021
Zulong YAN(
), Qilong PANG(
), Jianlong XIONG
Received:2024-10-21
Online:2025-10-25
Published:2025-11-05
Contact:
Qilong PANG
通讯作者:
庞启龙
作者简介:闫祖龙,男,1999 年生,硕士研究生。研究方向为基于深度学习的精密加工光学元件的表面形貌预测和性能分析。E-mail:yanzulong@njfu.edu.cn基金资助:CLC Number:
Zulong YAN, Qilong PANG, Jianlong XIONG. Prediction of Three-dimensional Machined Surface Topography of KDP Crystals Based on Deep Learning[J]. China Mechanical Engineering, 2025, 36(10): 2329-2334.
闫祖龙, 庞启龙, 熊建龙. 基于深度学习的KDP晶体三维已加工表面形貌预测[J]. 中国机械工程, 2025, 36(10): 2329-2334.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.10.021
| 验证集 | 进给量 f/(μm·r-1) | 主轴转速 n/(r·min-1) | 切削深度 ap/μm |
|---|---|---|---|
| 1 | 12 | 900 | 9 |
| 2 | 12 | 1200 | 3 |
| 3 | 12 | 1500 | 3 |
| 4 | 8 | 900 | 3 |
Tab.1 Cutting parameters for the validation set
| 验证集 | 进给量 f/(μm·r-1) | 主轴转速 n/(r·min-1) | 切削深度 ap/μm |
|---|---|---|---|
| 1 | 12 | 900 | 9 |
| 2 | 12 | 1200 | 3 |
| 3 | 12 | 1500 | 3 |
| 4 | 8 | 900 | 3 |
| 模型 | 组别 | 波长/μm | 幅值/nm | ||||
|---|---|---|---|---|---|---|---|
| 低频 | 中频 | 高频 | 低频 | 中频 | 高频 | ||
| 真实值 | 1 | 221.47 | 62.52 | 13.12 | 5.11 | 23.16 | 4.11 |
| 2 | 217.35 | 91.44 | 18.72 | 7.84 | 16.58 | 5.04 | |
| 3 | 272.73 | 100.62 | 21.35 | 8.54 | 31.12 | 8.86 | |
| 4 | 208.09 | 94.75 | 15.12 | 6.69 | 14.97 | 3.67 | |
| BiLSTM | 1 | 214.75 | 65.49 | 13.71 | 5.09 | 22.43 | 3.36 |
| 2 | 231.48 | 93.85 | 17.98 | 7.58 | 15.07 | 5.15 | |
| 3 | 263.74 | 99.58 | 21.77 | 8.68 | 34.31 | 8.67 | |
| 4 | 213.27 | 94.91 | 14.86 | 6.35 | 15.25 | 3.86 | |
| GRU | 1 | 231.63 | 75.26 | 15.06 | 4.86 | 21.75 | 2.56 |
| 2 | 222.59 | 91.86 | 16.68 | 10.90 | 17.06 | 5.84 | |
| 3 | 271.01 | 103.35 | 21.76 | 8.33 | 27.59 | 8.50 | |
| 4 | 217.89 | 90.74 | 16.19 | 4.96 | 15.34 | 3.44 | |
| RF | 1 | 274.08 | 52.19 | 20.82 | 6.46 | 12.09 | 5.16 |
| 2 | 294.61 | 54.01 | 23.98 | 13.25 | 17.70 | 8.27 | |
| 3 | 260.16 | 50.22 | 18.62 | 5.04 | 43.72 | 3.65 | |
| 4 | 274.01 | 52.12 | 20.81 | 6.49 | 12.09 | 3.81 | |
| CNN | 1 | 276.62 | 71.8 | 17.81 | 8.51 | 18.01 | 6.06 |
| 2 | 272.95 | 76.37 | 18.36 | 12.49 | 19.08 | 6.11 | |
| 3 | 272.92 | 76.37 | 18.36 | 6.87 | 43.91 | 4.08 | |
| 4 | 274.73 | 73.14 | 17.85 | 8.56 | 17.45 | 3.27 | |
Tab.2 Model prediction results
| 模型 | 组别 | 波长/μm | 幅值/nm | ||||
|---|---|---|---|---|---|---|---|
| 低频 | 中频 | 高频 | 低频 | 中频 | 高频 | ||
| 真实值 | 1 | 221.47 | 62.52 | 13.12 | 5.11 | 23.16 | 4.11 |
| 2 | 217.35 | 91.44 | 18.72 | 7.84 | 16.58 | 5.04 | |
| 3 | 272.73 | 100.62 | 21.35 | 8.54 | 31.12 | 8.86 | |
| 4 | 208.09 | 94.75 | 15.12 | 6.69 | 14.97 | 3.67 | |
| BiLSTM | 1 | 214.75 | 65.49 | 13.71 | 5.09 | 22.43 | 3.36 |
| 2 | 231.48 | 93.85 | 17.98 | 7.58 | 15.07 | 5.15 | |
| 3 | 263.74 | 99.58 | 21.77 | 8.68 | 34.31 | 8.67 | |
| 4 | 213.27 | 94.91 | 14.86 | 6.35 | 15.25 | 3.86 | |
| GRU | 1 | 231.63 | 75.26 | 15.06 | 4.86 | 21.75 | 2.56 |
| 2 | 222.59 | 91.86 | 16.68 | 10.90 | 17.06 | 5.84 | |
| 3 | 271.01 | 103.35 | 21.76 | 8.33 | 27.59 | 8.50 | |
| 4 | 217.89 | 90.74 | 16.19 | 4.96 | 15.34 | 3.44 | |
| RF | 1 | 274.08 | 52.19 | 20.82 | 6.46 | 12.09 | 5.16 |
| 2 | 294.61 | 54.01 | 23.98 | 13.25 | 17.70 | 8.27 | |
| 3 | 260.16 | 50.22 | 18.62 | 5.04 | 43.72 | 3.65 | |
| 4 | 274.01 | 52.12 | 20.81 | 6.49 | 12.09 | 3.81 | |
| CNN | 1 | 276.62 | 71.8 | 17.81 | 8.51 | 18.01 | 6.06 |
| 2 | 272.95 | 76.37 | 18.36 | 12.49 | 19.08 | 6.11 | |
| 3 | 272.92 | 76.37 | 18.36 | 6.87 | 43.91 | 4.08 | |
| 4 | 274.73 | 73.14 | 17.85 | 8.56 | 17.45 | 3.27 | |
| [1] | XIA C, PAN Z, POLDEN J, et al. Modelling and Prediction of Surface Roughness in Wire Arc Additive Manufacturing Using Machine Learning[J]. Journal of Intelligent Manufacturing, 2022, 33(5):1467-1482. |
| [2] | ZHANG H, PRASAD VALLABH C K, ZHAO X. Machine Learning Enhanced High Dynamic Range Fringe Projection Profilometry for In-situ Layer-wise Surface Topography Measurement during LPBF Additive Manufacturing[J]. Precision Engineering, 2023:84:1-14. |
| [3] | NASIR V, SASSANI F. A Review on Deep Learning in Machining and Tool Monitoring:Methods, Opportunities, and Challenges[J]. International Journal of Advanced Manufacturing Technology, 2021, 115(9/10):2683-2709. |
| [4] | LEI H, CHENG J, YANG D, et al. Effect of Pre-existing Micro-defects on Cutting Force and Machined Surface Quality Involved in the Ball-end Milling Repairing of Flawed KDP Crystal Surfaces[J]. Materials (Basel), 2022,15(21):7407. |
| [5] | PANG Q, XIONG J. Prediction Model of Three-dimensional Machined Potassium Dihydrogen Phosphate Surfaces Based on a Dynamic Response Machining System[J]. Materials, 2022, 15(24):9068. |
| [6] | LIU Q, CHENG J, LIAO Z, et al. Fractal Analysis on Machined Surface Morphologies of Soft-brittle KDP Crystals Processed by Micro Ball-end Milling[J]. Materials, 2023, 16(5):1782. |
| [7] | CHEN D, LI S, FAN J. Effect of KDP-crystal Material Properties on Surface Morphology in Ultra-precision Fly Cutting[J]. Micromachines, 2020, 11(9):802. |
| [8] | GIUSTI A, DOTTA M, MARADIA U, et al. Image-based Measurement of Material Roughness Using Machine Learning Techniques[J]. Procedia CIRP, 2020, 95:377-382. |
| [9] | YUHANG P, PING Z, YING Y, et al. New Insights into the Methods for Predicting Ground Surface Roughness in the Age of Digitalisation[J]. Precision Engineering, 2020, 67:393-418. |
| [10] | MISHRA A, JATTI V S. A Cutting-edge Framework for Surface Roughness Prediction Using Multiverse Optimization-driven Machine Learning Algorithms[J]. International Journal on Interactive Design and Manufacturing (IJIDeM), 2024, 18(7):5243-5260. |
| [11] | ZHANG Y, XU X. Machine Learning Surface Roughnesses in Turning Processes of Brass Metals[J]. International Journal of Advanced Manufacturing Technology, 2022. 121(3/4):2437-2444. |
| [12] | ZENG S, PI D. Milling Surface Roughness Prediction Based on Physics-informed Machine Learning[J]. Sensors, 2023, 23(10):4969. |
| [13] | ZHANG W. Surface Roughness Prediction with Machine Learning[J]. Journal of Physics:Conference Series, 2021, 1856(1):012040. |
| [14] | SANGWAN K S, SAXENA S, KANT G. Optimization of Machining Parameters to Minimize Surface Roughness Using Integrated ANN-GA Approach[J]. Procedia CIRP, 2015, 29:305-310. |
| [15] | NG C K, CHEN C, YANG Y, et al. Femtosecond Laser Micro-machining of Three-dimensional Surface Profiles on Flat Single Crystal Sapphire[J]. Optics & Laser Technology, 2024, 170:110205. |
| [16] | CUI Z P, LI G, LIU H Z, et al. Tool Anisotropic Wear Prediction and Its Influence on Surface Topography in Diamond Turning of Oxygen-free Copper[J]. Journal of Materials Processing Technology, 2023, 318:118042. |
| [17] | LIU T, ZHANG P, SU Y, et al. Fractal Analysis on the Surface Topography of Monocrystalline Silicon Wafers Sawn by Diamond Wire[J]. Materials Science in Semiconductor Processing, 2024, 180:108588. |
| [18] | PANG Q, SHU Z, XU Y. Extraction and Reconstruction of Arbitrary 3D Frequency Features from the Potassium Dihydrogen Phosphate Surfaces Machined by Different Cutting Parameters[J]. Materials, 2022, 15(21):7759. |
| [19] | GUO M, XIA W, WU C, et al. A Surface Quality Prediction Model Considering the Machine-tool-material Interactions[J]. The International Journal of Advanced Manufacturing Technology, 2024, 131(7):3937-3955. |
| [20] | CAI Y, YANG Y, WANG Y, et al. Model for Surface Topography Prediction in the Ultra-precision Grinding of Silicon Wafers Considering Volumetric Errors[J]. Measurement, 2024, 234:114825. |
| [1] | ZHAO Yunjie, HE Yansong, ZHANG Zhifei, XU Zhongming. 3D Beamforming Map Compression Method Based on Generative Model [J]. China Mechanical Engineering, 2025, 36(07): 1520-1529. |
| [2] | WU Shi, GAO Zengkuo, WANG Mingzhu, ZHAO Chengrui. Influences of Fractal Features of Helical Gear Surface Topography on Time-varying Contact Stiffness [J]. China Mechanical Engineering, 2025, 36(01): 59-68,77. |
| [3] | ZENG Hao, CAO Huajun, DONG Jianxiong. Tool Wear Prediction Method Based on ISABO-IBiLSTM Model [J]. China Mechanical Engineering, 2024, 35(11): 1995-2006. |
| [4] | LI Yue1, 2, XIE Heng1, ZHOU Gongbo1, 2, ZHOU Ping1, 2, LI Menggang1, 2. Soft Sensor Modeling and Uncertainty Analysis Approach of Tool Wear Based on Semi-supervised Bayesian Transformer [J]. China Mechanical Engineering, 2024, 35(11): 2015-2025. |
| [5] | YI Jun, YI Tao, CHEN Bing, DENG Hui, ZHOU Wei, . Modeling and Experimental Research of Ground Workpiece Surface Topography after Grinding with Structured Grinding Wheels [J]. China Mechanical Engineering, 2023, 34(22): 2711-2720. |
| [6] | WANG Ming, DONG Hai, WANG Baihe, WANG Zheng, WANG Jiawei. Experimental Research of Floating Grinding Processes for 2.5D Cf/SiC Brake Materials [J]. China Mechanical Engineering, 2023, 34(20): 2434-2441. |
| [7] | FU Yuantao, WEN Donghui, KONG Fanzhi, GAN Zuokun, CHENG Zhichao, . Research on Characteristics of Flow Fields during LHP Processes [J]. China Mechanical Engineering, 2023, 34(11): 1306-1314. |
| [8] | NIE Xin, TAN Tian, SHEN Danfeng. Research on Stamping Springback of Automobile Beam Parts Based on Deep Learning [J]. China Mechanical Engineering, 2023, 34(07): 838-846. |
| [9] | FANG Xuewei, JIANG Xiao, WANG Zhe, WU Xiaokang, HUANG Ke. Forming Process Optimization of Wire and Arc Additive Manufactured High-strength Steel ER120S-G [J]. China Mechanical Engineering, 2023, 34(02): 218-225. |
| [10] | TANG Donglin, YANG Zhou, CHENG Heng, LIU Mingxuan, ZHOU Li, DING Chao. Metal Defect Image Recognition Method Based on Shallow CNN Fusion Transformer [J]. China Mechanical Engineering, 2022, 33(19): 2298-2305,2316. |
| [11] | YU Hao, HUANG Huagui, ZHENG Jiali, ZHAO Tielin, ZHOU Xinliang. Non-contact On-line Inspection Method for Surface Defects of Cross-rolling Piercing Plugs for Seamless Steel Tubes [J]. China Mechanical Engineering, 2022, 33(14): 1717-1724. |
| [12] | YANG Guangyou, LIU Lang, XI Chenbo. Bearing Fault Diagnosis Based on SA-ACGAN Data Generation Model [J]. China Mechanical Engineering, 2022, 33(13): 1613-1621. |
| [13] | AI Qingbo, ZHANG Jie, CHENG Hui, LYU Youlong, ZUO Liling, HU Lan. Analysis for Roll-bending Forming Quality of Spaceflight Thin-walled Cylindrical Workpieces Based on PointCPP-LSF Method#br# [J]. China Mechanical Engineering, 2022, 33(08): 977-985. |
| [14] | ZHANG Shengwen, ZHOU Xi, LI Bincheng, CHENG Dejun, CHEN Wendi. Information Extraction Method of Part Machining Features Based on Image Deep Learning [J]. China Mechanical Engineering, 2022, 33(03): 348-355. |
| [15] | YAN Jieqiong, ZHOU Laishui, HU Shaoqian, WEN Siyang. Feature-preserving Denoising Method for Aero-engine Profile Point Cloud [J]. China Mechanical Engineering, 2021, 32(23): 2850-2860,2889. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||