[1]胡德凤,张晨曦,汪世涛,等.基于深度信号处理和堆叠残差GRU的刀具磨损智能预测模型[J]. 计算机科学, 2021, 48(6):175-183.
HU Defeng, ZHANG Chenxi, WANG Shitao, et al. Intelligent Prediction Model of Tool Wear Based on Deep Signal Processing and Stacked-ResGRU[J]. Computer Science, 2021, 48(6):175-183.
[2]RECH J, GIOVENCO A, COURBON C, et al. Toward a New Tribological Approach to Predict Cutting Tool Wear[J]. CIRP Annals, 2018, 67(1):65-68.
[3]TETI R, JEMIELNIAK K, ODONNELL G, et al. Advanced Monitoring of Machining Operations[J]. CIRP Annals, 2010, 59(2):717-739.
[4]LI Yingguang, LIU Changqing, HUA Jiaqi, et al. A Novel Method for Accurately Monitoring and Predicting Tool Wear under Varying Cutting Conditions Based on Meta-learning[J]. CIRP Annals, 2019, 68(1):487-490.
[5]肖斌,李炎炎,段增峰,等.基于ISCSO-LSTM模型的刀具磨损预测[J]. 组合机床与自动化加工技术, 2023(6):102-105.
XIAO Bin, LI Yanyan, DUAN Zengfeng, et al. Tool Wear Prediction Based on ISCSO-LSTM Model[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2023(6):102-105.
[6]KONG Dongdong, CHEN Yongjie, LI Ning, et al. Tool Wear Estimation in End Milling of Titanium Alloy Using NPE and a Novel WOA-SVM Model[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(7):5219-5232.
[7]谢振龙,岳彩旭,刘献礼,等.基于EMD-SVM的钛合金铣削过程刀具磨损监测[J]. 振动·测试与诊断, 2022, 42(5):988-996.
XIE Zhenlong, YUE Caixu, LIU Xianli, et al. Tool Wear Monitoring in Titanium Alloy Milling Process Based on EMD-SVM[J].Journal of Vibration, Measurement and Diagnosis, 2022, 42(5):988-996.
[8]CAGGIANO A. Tool Wear Prediction in Ti-6Al-4V Machining through Multiple Sensor Monitoring and PCA Features Pattern Recognition[J]. Sensors, 2018, 18(3):823.
[9]郭亮,高宏力,张一文,等.基于深度学习理论的轴承状态识别研究[J]. 振动与冲击, 2016,35(12):167-171.
GUO Liang, GAO Hongli, ZHANG Yiwen, et al. Research on Bearing Condition Monitoring Based on Deep Learning[J].Journal of Vibration and Shock, 2016, 35(12):167-171.
[10]CAI Weili, ZHANG Wenjuan, HU Xiaofeng, et al. A Hybrid Information Model Based on Long Short-term Memory Network for Tool Condition Monitoring[J]. Journal of Intelligent Manufacturing, 2020, 31(6):1497-1510.
[11]何彦,凌俊杰,王禹林,等.基于长短时记忆卷积神经网络的刀具磨损在线监测模型[J]. 中国机械工程, 2020, 31(16):1959-1967.
HE Yan, LING Junjie, WANG Yulin, et al. In-process Tool Wear Monitoring Model Based on LSTM-CNN[J]. China Mechanical Engineering, 2020, 31(16):1959-1967.
[12]WANG Shuo, YU Zhenliang, GUO Yongqi, et al. A CNN-LSTM-PSO Tool Wear Prediction Method Based on Multi-channel Feature Fusion[J]. Mechanical Engineering Science, 2022, 4(2):39-48.
[13]LI Xianwang, QIN Xuejing, WU Jinxin, et al. Tool Wear Prediction Based on Convolutional Bidirectional LSTM Model with Improved Particle Swarm Optimization[J]. The International Journal of Advanced Manufacturing Technology, 2022, 123(11/12):4025-4039.
[14]刘会永,张松,李剑峰,等.采用改进CNN-BiLSTM模型的刀具磨损状态监测[J]. 中国机械工程, 2022, 33(16):1940-1947.
LIU Huiyong, ZHANG Song, LI Jianfeng, et al.Tool Wear Detection Based on Improved CNN-BiLSTM Model[J]. China Mechanical Engineering, 2022, 33(16):1940-1947.
[15]SONG Guohao, ZHANG Jianhua, ZHU Kangyi, et al. Tool Wear Monitoring Based on Multi-kernel Gaussian Process Regression and Stacked Multilayer Denoising Autoencoders[J]. Mechanical Systems and Signal Processing, 2023, 186:109851.
[16]张天骁,谷艳玲,安文杰.基于EG-SSMA-DELM的数控铣床刀具RUL预测研究[J]. 机电工程, 2023, 40(9):1464-1470.
ZHANG Tianxiao, GU Yanling, AN Wenjie. RUL Prediction Based on EG-SSMA-DELM Milling Machine Tool[J]. Journal of Mechanical & Electrical Engineering, 2023, 40(9):1464-1470.
[17]TROJOVSKY P, DEHGHANI M. Subtraction-average-based Optimizer:a New Swarm-inspired Metaheuristic Algorithm for Solving Optimization Problems[J]. Biomimetics, 2023,8(2):149.
[18]刘艳,张玉. 基于Logistic映射的射频识别防碰撞算法[J].计算机应用, 2020, 40(8):2334-2339.
LIU Yan, ZHANG Yu. Radio Frequency Identification Anti-collision Algorithm Based on Logistic Mapping[J]. Journal of Computer Applications, 2020, 40(8):2334-2339.
[19]TANYILDIZI E, DEMIR G. Golden Sine Algorithm:a Novel Math-inspired Algorithm[J]. Advances in Electrical & Computer Engineering, 2017,17(2):71-78.
[20]YAO Xin, LIU Yong, LIN Guangming. Evolutionary Programming Made Faster[J]. IEEE Transactions on Evolutionary Computation, 1999,3(2):82-102.
[21]KENNEDY J, EBERHART R. Particle Swarm Optimization[C]∥IEEE Proceedings of ICNN95—International Conference on Neural Networks. Perth, 1995:1942-1948.
[22]MIRJALILI S, MIRJALILI S M, LEWIS A. Grey Wolf Optimizer[J]. Advances in Engineering Software, 2014, 69:46-61.
[23]ZHONG Changting, LI Gang, MENG Zeng. Beluga Whale Optimization:a Novel Nature-inspired Metaheuristic Algorithm[J]. Knowledge-Based Systems, 2022, 251:109215.
[24]STORN R, PRICE K. Differential Evolution:a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces[J]. Journal of Global Optimization, 1997, 11:341-359.
[25]KARABOGA D. An Idea Based on Honey Bee Swarm for Numerical Optimization[R].Kayseri:Erciyes University, 2005.
[26]XUE Jiankai, SHEN Bo. Dung Beetle Optimizer:a New Meta-heuristic Algorithm for Global Optimization[J]. The Journal of Supercomputing, 2023, 79(7):7305-7336.
[27]HOCHREITER S, JRGEN S. Long Short-term Memory[J]. Neural Computation, 1997, 9(8):1735-1780.
[28]SIMA S, NEDA T, AKBAR S N.The Performance of LSTM and BiLSTM in Forecasting Time Series[C]∥IEEE International Conference on Big Data. Los Angeles, 2019:3285-3292.
[29]PHM Society. 2010 Phm Society Conference Data Challenge[EB/OL].[2023-10-15].https:∥www.phmsociety.org/competition/phm/10.
[30]LI X, LIM B S, ZHOU J H, et al. Fuzzy Neural Network Modelling for Tool Wear Estimation in Dry Milling Operation[C]∥Annual Conference of the PHM Society. San Diego, 2009:16312804.
[31]李亚,黄亦翔,赵路杰,等.基于t分布邻域嵌入与XGBoost的刀具多工况磨损评估[J]. 机械工程学报, 2020, 56(1):132-140.
LI Ya, HUANG Yixiang, ZHAO Lujie, et al. Multi-condition Wear Evaluation of Tool Based on t-SNE and XGBoost[J]. Journal of Mechanical Engineering, 2020, 56(1):132-140.
[32]黄贤振,孙良仕,高娓,等.基于SFS-SVR的高速铣削刀具剩余使用寿命预测[J]. 东北大学学报(自然科学版), 2023, 44(6):824-831.
HUANG Xianzhen, SUN Liangshi, GAO Wei, et al. Remaining Useful Life Prediction of Cutting Tools Based on SFS-SVR in High Speed Milling Operations[J]. Journal of Northeastern University (Natural Science), 2023, 44(6):824-831.
[33]LI Changpeng, PENG Tianhao, ZHU Yanmin. A Cutting Pattern Recognition Method for Shearers Based on ICEEMDAN and Improved Grey Wolf Optimizer Algorithm-Optimized SVM[J]. Applied Sciences, 2021, 11(19):9081
[34]吴飞,农皓业,马晨浩.基于粒子群优化算法-长短时记忆模型的刀具磨损预测方法[J]. 吉林大学学报:工学版, 2023, 53(4):989-997.
WU Fei, NONG Haoye, MA Chenhao. Tool Wear Prediction Method Based on Particle Swarm Optimizationlong and Short Time Memory Model[J]. Journal of Jilin University:Engineering and Technology Edition, 2023, 53(4):989-997.
[35]WOLPERT D H, MACREADY W G. No Free Lunch Theorems for Optimization[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1):67-82.
|