中国机械工程 ›› 2025, Vol. 36 ›› Issue (9): 2140-2149.DOI: 10.3969/j.issn.1004-132X.2025.09.026

• 工程前沿 • 上一篇    

新型可变形串联管道检测机器人:设计、建模及实验

张益鑫(), 苗忆南, 易智恒, 万文静, 王兴坚, 曾松, 王少萍()   

  1. 北京航空航天大学自动化科学与电气工程学院, 北京, 100191
  • 收稿日期:2024-06-13 出版日期:2025-09-25 发布日期:2025-10-15
  • 通讯作者: 王少萍
  • 作者简介:张益鑫,男,1990年生,博士后研究人员。研究方向为智能机器人及机电系统建模控制。E-mail:zhang_yixin@buaa.edu.cn
    王少萍*(通信作者),女,1966年生,教授、博士研究生导师。研究方向为故障诊断、健康管理及机电控制与仿真。E-mail:shaopingwang@vip.sina.com
  • 基金资助:
    国家自然科学基金(52205299);中国博士后科学基金(2022M710304)

A Novel Deformable Serial Pipeline Inspection Robots:Design, Modeling and Experimentation

Yixin ZHANG(), Yinan MIAO, Zhiheng YI, Wenjing WAN, Xingjian WANG, Song ZENG, Shaoping WANG()   

  1. School of Automation Science and Electrical Engineering,Beihang University,Beijing,100191
  • Received:2024-06-13 Online:2025-09-25 Published:2025-10-15
  • Contact: Shaoping WANG

摘要:

面向油-气管道日常维护和检测的重大需求,提出了一种具有自适应变形能力的模块化管道检测机器人RoboChain-Ⅰ。与多数轮式管道机器人不同,该机器人采用细胞启发的模块化仿生设计,具备更灵活的关节冗余转动自由度,可根据管道形状及管径变化主动变形。单体模块采用双轮独立驱动,前后各设置一对俯仰、偏航作动机构,模块间由可被动伸缩的弹簧阻尼支撑结构或可控电磁吸附分离的刚性结构连接,提高了机器人复杂管道通过能力和适应性。对机器人管道内运动受力进行建模,利用Adams实现其运动学仿真,对模型设计参数选择进行了验证。最终,RoboChain-Ⅰ完成了地面、直管、弯管、变径管道及整机子母主动分离的通过实验,验证了机器人在175~440 mm管径范围内实现三维复杂管网检测作业的有效性和可靠性,最大运动速度达0.87 m/s(地面)与0.4 m/s(管内)。

关键词: 管道检测, 可变形机器人, 冗余自由度, 运动控制, 模块化设计

Abstract:

In response to the urgent demands for daily maintenance and inspection of oil and gas pipelines, a novel modular pipeline inspection robot named RoboChain-Ⅰ, featuring adaptive deformation capabilities, was proposed herein. Unlike most wheel-based pipeline robots, the robot adopted a cell-inspired modular biomimetic design with more flexible joint redundant rotational degrees of freedom(DOF), allowing the robot to actively deform in response to pipelines with varying shapes and diameters. Each module was equipped with dual-wheel independent drive, and a pair of pitch and yaw actuation mechanisms were installed at the front and rear. The modules were connected by passive elastic damping support structures or controllable electromagnetic adhesion-separation rigid structures, which improved the robot's ability to navigate complex pipelines and adapt to various environments. The forces acting on the robots during their motions inside the pipeline were modeled, and kinematics simulations were conducted using Adams. The selection of design parameters for the model was validated accordingly. A comprehensive series of experiments were conducted to evaluate RoboChain-Ⅰ's performance, including terrestrial locomotion, straight pipe traversal, elbow pipe navigation, diameter-varying pipeline adaptation, and active mother-child separation. Experimental results validate the robot's effectiveness and reliability in performing inspection tasks within complex three-dimensional pipeline networks with diameters ranging from 175~440 mm, demonstrating maximum velocities of 0.87 m/s on flat surfaces and 0.4 m/s within pipelines.

Key words: pipeline inspection, deformable robot, redundant degrees of freedom, motion control, modular design

中图分类号: