中国机械工程 ›› 2025, Vol. 36 ›› Issue (8): 1832-1841.DOI: 10.3969/j.issn.1004-132X.2025.08.018

• 智能制造 • 上一篇    

基于改进自抗扰控制的高空风机叶片打磨机器人被动柔顺控制方法研究

李浩, 刘欣荣(), 刘仪沁, 范狄庆   

  1. 上海工程技术大学机械与汽车工程学院, 上海, 201600
  • 收稿日期:2024-07-02 出版日期:2025-08-25 发布日期:2025-09-18
  • 通讯作者: 刘欣荣
  • 作者简介:李 浩,男,1996年生,硕士研究生。研究方向为特种装备机器人设计及动态性能。
  • 基金资助:
    国家自然科学基金(52175421)

Research on Passive Compliance Control Method of High Altitude Wind Turbine Blade Grinding Robots Based on Improved ADRC

Hao LI, Xinrong LIU(), Yiqin LIU, Diqing FAN   

  1. School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai,201600
  • Received:2024-07-02 Online:2025-08-25 Published:2025-09-18
  • Contact: Xinrong LIU

摘要:

为了应对高空中未知干扰,保持高空风机叶片修复机器人末端打磨接触力的恒定,提出了一种基于改进自抗扰控制(ADRC)的机器人被动柔顺控制算法。该算法结合死区补偿和重力补偿算法,充分考虑气动系统气体压缩性、电气比例阀死区特性、打磨过程中倾角变化以及高空作业时未知扰动等问题,采用跟踪微分器过渡输入信号,利用状态观测器观测系统扰动,通过状态误差反馈控制律进行补偿。通过建立控制系统的数学模型并进行仿真分析得出,相比传统比例积分微分(PID)算法,该控制算法在力控制性能和响应速度上均有提升;搭建实验平台进行多种工况实验,实验结果表明,该控制算法系统调节时间缩短44.6%~51.4%,最大误差绝对值减小45.4%~69.4%,误差均方值减小56.5%~91.2%。由此可得,所提算法具有更好的动态响应性能和力控制精度,具有较强的抗干扰能力和鲁棒性,为工程实际应用打下理论基础。

关键词: 自抗扰控制, 机器人打磨, 柔顺控制, 气动系统建模, 风机叶片

Abstract:

To cope with unknown disturbances at high altitudes and maintain a constant contact forces at the end of a high-altitude wind turbine blade repair robots during polishing, a passive compliant control algorithm was proposed based on an improved ADRC approach. The algorithm combined dead-zone compensation and gravity compensation algorithms, fully considering issues such as gas compressibility in the pneumatic systems, characteristics of electrical proportional valve dead zones, changes in tilt angle during polishing processes, and unknown disturbances during high-altitude operations.A tracking differentiator was utilized for excessive input signals, a state observer was employed to monitor system disturbances, and compensated through a state error feedback control law. By establishing the mathematical model of the control systems and conducting simulation analysis, it is found that this control algorithm improves both force control performance and response speed compared to the traditional proportional-integral-derivative(PID) algorithm. An experimental platform was constructed to conduct experiments under various operating conditions. The experimental results show that the control algorithm systems achieve 44.6% to 51.4% reductions in settling time, a decrease in the absolute maximum error by 45.4% to 69.4%, and reductions in mean square error by 56.5% to 91.2%. Therefore, this algorithm demonstrates improved dynamic response performance and force control accuracy, along with strong disturbance rejection capabilities and robustness, providing a theoretical foundation for practical engineering applications.

Key words: active disturbance rejection control(ADRC), robot polishing, compliant control, pneumatic system modeling, wind turbine blade

中图分类号: