[1]LUETJERING G, WILLIAMS J C. Titanium[M]. 2nd ed.Heidelberg: Springer, 2007
[2]BANERJEE D, WILLIAMS J C. Perspectives on Titanium Science and Technology[J]Acta Materialia, 2013, 61(3):844-879.
[3]闫辰侃, 曲寿江, 冯艾寒, 等. 钛及钛合金形变孪晶的研究进展[J].稀有金属,2019, 43(5):449-460.
YAN Chenkan, QU Shoujiang, FENG Aihan, et al. Recent Advances of Deformation Twins in Titanium and Titanium Alloys[J]. Chinese Journal of Rare Metals, 2019, 43(5):449-460.
[4]黄卫东, 李延民, 冯莉萍, 等. 金属材料激光立体成形技术[J]. 材料工程, 2002(3):40-43.
HUANG Weidong, LI Yanmin, FENG Liping, et al. Laser Solid Forming of Metal Powder Materials[J]. Journal of Materials Engineering, 2002(3):40-43.
[5]张高,刘梅军,韩嘉琪,等.压气机整体叶盘修复再制造的研究进展[J].航空材料学报,2024,44(3):65-81.
ZHANG Gao, LIU Meijun, HAN Jiaqi, et al. Research Progress in Repair and Remanufacture of Compressor Blisk[J]. Journal of Aeronautical Materials, 2024,44(3):65-81.
[6]TIAN X J, ZHANG S Q, WANG H M. The Influences of Anneal Temperature and Cooling Rate on Microstructure and Tensile Properties of Laser Deposited Ti-4Al-1.5Mn Titanium Alloy[J]. Journal of Alloys and Compounds, 2014, 608:95-101.
[7]REN Y M, LIN X, FU X, et al. Microstructure and Deformation Behavior of Ti-6A1-4V Alloy by High-power Laser Solid Forming[J]. Acta Materialia, 2017, 132:82-95.
[8]ZHANG Shuangyin, LIN Xin, CHEN Jing, et al. Heat-treated Microstructure and Mechanical Properties of Laser Solid Forming Ti-6Al-4V Alloy[J]. Rare Metals, 2009, 28(6):537-544.
[9]许良, 苏居季, 周松, 等.TC4钛合金激光双光束焊T形接头疲劳性能及断裂机理[J].中国有色金属学报,2019,29(7):1408-1416.
XU Liang, SU Juji, ZHOU Song, et al. FatiguePerformance and Fracture Mechanism of Dual-beam Laser Welded T-joints of TC4 Titanium Alloy[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(7):1408-1416.
[10]王亚辉, 黄亮, 刘翔, 等. 基于增材制造和锻造复合成形的TC4钛合金组织和性能研究[J].稀有金属, 2021, 45(8):897-904.
WANG Yahui, HUANG Liang, LIU Xiang, et al. Microstructure and Mechanical Properties of TC4 Alloy Formed by Additive Manufacturing Combined with Forging[J]. Chinese Journal of Rare Metals. 2021, 45(8):897-904.
[11]SUN Kun, XIANG Wenli, SHU Xingzhu. Effects of Different Orietations on Mechanical Proprieties of Laser Rapid Forming Ti-6Al-4V Alloy[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(3):566-570.
[12]LONG Jian, ZHANG Linjie, ZHU Lei, et al. Comparison of Low-cycle Fatigue Properties of Two Kinds of High Energy Beam Welded Joints of TC4 Alloy[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(11):3376-3386.
[13]LIU Hanqing, WANG Haomin, ZHANG Zhen, et al. Enhancing the Mechanical Properties of Electron Beam Welded TC17 Titanium Alloy Joint by Post-weld Heat Treatment[J]. Journal of Alloys and Compounds, 2019, 810:151937.
[14]CHEN Yuanhang, YANG Chunli, FAN Chenglei, et al. Microstructure Evolution Mechanism and Mechanical Properties of TC11-TC17 Dual Alloy after Annealing Treatment[J]. Journal of Alloys and Compounds, 2020,842:155874.
[15]VRANCKEN B , THIJS L , KRUTH J P , et al. Heat Treatment of Ti6Al4V Produced by Selective Laser Melting: Microstructure and Mechanical Properties[J]. Journal of Alloys and Compounds, 2012, 541:177-185.
[16]张志强, 董利民, 胡明, 等.冷却速率对TC16钛合金显微组织和力学性能的影响[J].中国有色金属学报, 2019,29(7):1391-1398.
ZHANG Zhiqiang, DONG Limin, HU Ming, et al. Effect of Cooling Rate on Microstructure and Mechanical Properties of TC16 Titanium Alloy[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(7): 1391-1398.
[17]ZHUO L, LI Changmeng, LIU Dong, et al. Effect of Heat Treatment on Microstructure and Tensile Properties of Laser Deposited Titanium Alloy TC21[J]. Material Research Innovations, 2015, 18(S4):S4-929-S4-932.
[18]SHI Zhifeng, GUO Hongzhen, ZHANG Jianwei, et al. Microstructure-fracture Toughness Relationships and Toughening Mechanism of TC21 Titanium Alloy with Lamellar Microstructure[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(12):2440-2448.
[19]SHAO Hui, ZHAO Yongqing, GE Peng, et al. Influence of Cooling Rate and Aging on the Lamellar Microstructure and Fractography of TC21 Titanium Alloy[J]. Metallography Microstructure and Analysis, 2013,2(1):35-41.
[20]SU Meike, LIANG Zebao, ZHENG Lijing, et al. Effect of Heat Treatment on Microstructures and Mechanical Properties in a Full Lamellar PM TiAl Alloy[J]. Materials Research, 2012,15(3):455-460.
[21]钦兰云, 李明东, 杨光, 等.热处理对激光沉积TC4钛合金组织与力学性能的影响[J].稀有金属,2018,42(7):698-704.
QIN Lanyun, LI Mingdong, YANG Guang, et al. Microstructure and Mechanical Properties of Laser Deposition Manufacturing TC4 Titanium Alloy with Heat Treatment[J]. Chinese Journal of Rare Metals, 2018,42(7):698-704.
[22]WU Yongli, XIONG Yi, CHEN Zhengge, et al. Effect of Gas Pressure on Microstructure and Mechanical Properties of TC11 Titanium Alloy during Supersonic Fine Particle Bombardment[J]. Transactions of Nonferrous Metals Society of China, 2023, 33(8):2379-2394.
[23]雷晓飞, 董利民, 张志强, 等.固溶和时效温度对TC6钛合金显微组织与力学性能的影响[J].稀有金属材料与工程, 2020,49(3):1038-1044.
LEI Xiaofei, DONG Limin, ZHANG Zhiqiang, et al. Effects of Solution-treatment and Aging Temperature on Microstructure and Mechanical Properties of TC6 Titanium Alloy[J]. Rare Metal Materials and Engineering, 2020,49(3):1038-1044.
[24]PAYDAS H, MERTENS A, CARRUS R, et al. Laser Cladding as Repair Technology for Ti6Al4V Alloy: Influence of Building Strategy on Microstructure and Hardness[J]. Materials and Design, 2015, 85:497-510.
|