[1]伍亦文, 卜长根. 深孔钻机离合器接合过程动力学特性分析[J]. 中国机械工程, 2012, 23(12):1433-1437.
WU Yiwen, BU Changgen. Study on Clutch Engagement Process Dynamics Characteristics for Deep Drilling Rig[J]. China Mechanical Engineering, 2012, 23(12):1433-1437.
[2]樊红卫, 张旭辉, 曹现刚, 等. 智慧矿山背景下我国煤矿机械故障诊断研究现状与展望[J]. 振动与冲击, 2020, 39(24):194-204.
FAN Hongwei, ZHANG Xuhui, CAO Xiangang, et al. Research Status and Prospect of Fault Diagnosis of Chinas Coal Mine Machines under Background of Intelligent Mine[J]. Journal of Vibration and Shock, 2020, 39(24):194-204.
[3]马宏伟, 孙思雅, 王川伟, 等. 多机械臂多钻机协作的煤矿巷道钻锚机器人关键技术[J]. 煤炭学报, 2023, 48(1):497-509.
MA Hongwei, SUN Siya, WANG Chuanwei, et al. Key Technology of Drilling Anchor Robot with Multi-manipulator and Multi-rig Cooperation in the Coal Mine Roadway[J]. Journal of China Coal Society, 2023, 48(1):497-509.
[4]何生全, 何学秋, 宋大钊, 等. 冲击地压多参量集成预警模型及智能判识云平台[J]. 中国矿业大学学报, 2022, 51(5):850-862.
HE Shengquan, HE Xueqiu, SONG Dazhao, et al. Multi-parameter Integrated Early Warning Model and an Intelligent Identification Cloud Platform of Rockburst[J]. Journal of China University of Mining & Technology, 2022, 51(5):850-862.
[5]赵志宏, 李乐豪, 杨绍普, 等. 一种频域特征提取自编码器及其在故障诊断中的应用研究[J]. 中国机械工程, 2021, 32(20):2468-2474.
ZHAO Zhihong, LI Lehao, YANG Shaopu, et al. A Frequency Domain Feature Extraction Auto-encoder and Its Applications on Fault Diagnosis[J]. China Mechanical Engineering, 2021, 32(20):2468-2474.
[6]BETTA G, LIGUORI C, PAOLILLO A, et al. A DSP-based FFT-analyzer for the Fault Diagnosis of Rotating Machine Based on Vibration Analysis[J].IEEE Transactions on Instrumentation and Measurement, 2002,51(6):1316-1322.
[7]ZHENG Jinde, HUANG Siqi, PAN Haiyang, et al. An Improved Empirical Wavelet Transform and Refined Composite Multiscale Dispersion Entropy-based Fault Diagnosis Method for Rolling Bearing[J]. IEEE Access, 2020, 8:168732-168742.
[8]KESHTAN M N, NOURI KHAJAVI M. Bearings Fault Diagnosis Using Vibrational Signal Analysis by EMD Method[J]. Research in Nondestructive Evaluation, 2016, 27(3):155-174.
[9]伊鑫, 杨明锦, 杨林顺, 等. 基于KNN与SVM两级综合健康指标的托辊故障诊断方法[J]. 选煤技术, 2020(5):94-102.
YI Xin, YANG Mingjin, YANG Linshun, et al. The KNN and SVM-based 2-level Comprehensive Health Indicators Diagnosis Method for Detecting the Failure of Belt Conveyors Idlers[J]. Coal Preparation Technology, 2020(5):94-102.
[10]张钰, 陈珺, 王晓峰, 等. 随机森林在滚动轴承故障诊断中的应用[J]. 计算机工程与应用, 2018, 54(6):100-104.
ZHANG Yu, CHEN Jun, WANG Xiaofeng, et al. Application of Random Forest on Rolling Element Bearings Fault Diagnosis[J]. Computer Engineering and Applications, 2018, 54(6):100-104.
[11]张龙, 胡燕青, 赵丽娟, 等. 多通道信息融合与深度迁移学习的旋转机械故障诊断[J]. 中国机械工程, 2023, 34(8):966-975.
ZHANG Long, HU Yanqing, ZHAO Lijuan, et al. Multichannel Information Fusion and Deep Transfer Learning for Rotating Machinery Fault Diagnosis[J]. China Mechanical Engineering, 2023, 34(8):966-975.
[12]杨芬, 赵文薪. 基于贝叶斯优化SVM的轴承故障诊断[J]. 煤矿机械, 2022, 43(9):178-180.
YANG Fen, ZHAO Wenxin. Bearing Fault Diagnosis Based on Bayesian Optimization SVM[J]. Coal Mine Machinery, 2022, 43(9):178-180.
[13]WANG Huan, LIU Zhiliang, PENG Dandan, et al. Attention-guided Joint Learning CNN with Noise Robustness for Bearing Fault Diagnosis and Vibration Signal Denoising[J]. ISA Transactions, 2022, 128(Pt B):470-484.
[14]陈保家, 刘浩涛, 徐超, 等. 深度置信网络在齿轮故障诊断中的应用[J]. 中国机械工程, 2019, 30(2):205-211.
CHEN Baojia, LIU Haotao, XU Chao, et al. Gear Fault Diagnosis Based on DBNS[J]. China Mechanical Engineering, 2019, 30(2):205-211.
[15]ZHANG Tengfei, LIU Shuyong, ZHANG Suai. Review on Fault Diagnosis on the Rolling Bearing[J]. Journal of Physics:Conference Series, 2021, 1820(1):012107.
[16]毛君, 郭浩, 陈洪月. 基于深度自编码网络的采煤机截割部减速器故障诊断[J]. 煤炭科学技术, 2019, 47(11):123-128.
MAO Jun, GUO Hao, CHEN Hongyue. Fault Diagnosis of Shearer Cutting Unit Reducer Based on Deep Auto-encoder Network[J]. Coal Science and Technology, 2019, 47(11):123-128.
[17]曹现刚, 张国祯, 张鑫媛, 等. 基于振动图像和DCNN的采煤机滚动轴承故障诊断[J]. 煤矿机械, 2020, 41(7):149-152.
CAO Xiangang, ZHANG Guozhen, ZHANG Xinyuan, et al. Fault Diagnosis of Shearer Rolling Bearing Based on Vibration Image and DCNN[J]. Coal Mine Machinery, 2020, 41(7):149-152.
[18]谢娜, 闫顺礼. 基于改进深度置信网络的采煤机摇臂传动系统故障诊断研究[J]. 煤矿机械, 2020, 41(4):153-155.
XIE Na, YAN Shunli. Research on Fault Diagnosis of Shearer Ranging Arm Drive System Based on Improved Deep Belief Network[J]. Coal Mine Machinery, 2020, 41(4):153-155.
[19]CHEN Xihui, JI Aimin, CHENG Gang. A Novel Deep Feature Learning Method Based on the Fused-stacked AEs for Planetary Gear Fault Diagnosis[J]. Energies, 2019, 12(23):4522.
[20]张伟,李军霞,吴磊,等. 基于1DCNN-ELM的带式输送机托辊轴承故障诊断研究[J]. 煤炭科学技术, 2023, 51(增刊1):383-389.
ZHANG Wei, Li Junxia, WU Lei, et al. Research on Fault Diagnosis of Idler Bearing of Belt Conveyor Based on 1DCNN-ELM[J]. Coal Science and Technology, 2023, 51(S1):383-389.
[21]PAN Yongtai, BI Yankun, ZHANG Chuan, et al. Feeding Material Identification for a Crusher Based on Deep Learning for Status Monitoring and Fault Diagnosis[J]. Minerals, 2022, 12(3):380.
[22]包从望, 江伟, 刘永志, 等. 变工况下采煤机故障诊断的迁移学习方法[J]. 机床与液压, 2022, 50(18):176-182.
BAO Congwang, JIANG Wei, LIU Yongzhi, et al. Transfer Learning Method for Shearer Fault Diagnosis under Variable Working Conditions[J]. Machine Tool & Hydraulics, 2022, 50(18):176-182.
[23]孙艳玲,孙显彬,贾新月,等.基于可解释模型的低速重载轴承故障诊断研究[J/OL].轴承,1-10[2024-06-13].http:∥kns.cnki.net/kcms/detail/41.1148.TH.20231127.1538.002.html.
SUN Yanling, SUN Xianbin, JIA Xinyue, et al. Research on Fault Diagnosis of Low Speed and Heavy load Bearing Based on Interpretable Neual Network Modal[J/OL]. Bearing,1-10[2024-06-13].http:∥kns.cnki.net/kcms/detail/41.1148.TH.20231127.1538.002.html.
[24]NIKULA R P, KARIOJA K, PYLV\\"AN\\"AINEN M, et al. Automation of Low-speed Bearing Fault Diagnosis Based on Autocorrelation of Time Domain Features[J]. Mechanical Systems and Signal Processing, 2020, 138:106572.
[25]宋乾坤, 周孟然. 基于CWT-CNN的滚动轴承故障诊断[J]. 重庆工商大学学报(自然科学版), 2023, 40(3):42-47.
SONG Qiankun, ZHOU Mengran. Fault Diagnosis of Rolling Bearing Based on CWT-CNN[J]. Journal of Chongqing Technology and Business University (Natural Science Edition), 2023, 40(3):42-47.
[26]MA Ruiyi, HAN Tian, LEI Wenxin. Cross-domain Meta Learning Fault Diagnosis Based on Multi-scale Dilated Convolution and Adaptive Relation Module[J]. Knowledge-Based Systems, 2023, 261:110175.
[27]ZADEH S G, SCHMID M. Bias in Cross-entropy-Based Training of Deep Survival Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(9):3126-3137.
[28]SMITH W A, RANDALL R B. Rolling Element Bearing Diagnostics Using the Case Western Reserve University Data:a Benchmark Study[J]. Mechanical Systems and Signal Processing. 2015, 64/65:100-131.
|