Previous Articles Next Articles
TAN Xinfeng;LUO Jianbin
Online:
2020-01-25
Published:
2020-04-11
谭新峰;雒建斌
基金资助:
CLC Number:
TAN Xinfeng, LUO Jianbin. Research Advances of Lubrication[J]. China Mechanical Engineering.
谭新峰, 雒建斌. [学科发展]润滑研究进展[J]. 中国机械工程.
[1]ERDEMIR A, ERYILMAZ O. Achieving Superlubricity in DLC Films by Controlling Bulk, Surface, and Tribochemistry[J]. Friction, 2014,2(2): 140-155.
[2]KHADEM M, PENKOV O V, YANG H K, et al. Tribology of Multilayer Coatings for Wear Reduction: a Review[J].Friction, 2017,5(3): 248-262.
[3]ERDEMIR A, ERYILMAZ O L, FENSKE G. Synthesis of Diamondlike Carbon Films with Superlow Friction and Wear Properties[J]. J. Vac. Sci. Technol. A, 2000,18(4): 1987-1992.
[4]ANDERSSON J, ERCK R A, ERDEMIR A. Friction of Diamond-like Carbon Films in Different Atmospheres[J]. Wear, 2003,254(11): 1070-1075.
[5]LIU S W, ZHANG C H, OSMAN E, et al. Influence of Tribofilm on Superlubricity of Highly-hydrogenated Amorphous Carbon Films in Inert Gaseous Environments[J]. Science China: Technological Sciences, 2016,59(12): 1795-1803.
[6]OU Y J, WANG Y F, YUE Z F, et al. Superlubric Properties of Self-mated Hydrogenated Graphite-like Carbon Films[J]. China Surface Engineering, 2019, 32(1): 72-77.
[7]YUE Z F, WANG Y F, ZHANG J Y. Microstructure Changes of Self-mated Fullerene-like Hydrogenated Carbon Films from Low Friction to Super-low Friction with the Increasing Normal Load[J]. Diamond and Related Materials, 2018, 88:276-281.
[8]CHEN X C, KATO T. Growth Mechanism and Composition of Ultrasmooth a-C∶H∶Si Films Grown from Energetic Ions for Superlubricity[J]. Journal of Applied Physics, 2014, 115(4): 044908.
[9]MA T B, WANG H, HU Y Z. Friction between Diamond-like Carbon(DLC) Films: a Molecular Dynamics Study[J]. Advanced Tribology, 2009:554-555.
[10]MA T B, HU Y Z, WANG H. Microstructural and Stress Properties of Ultrathin Diamond-like Carbon Films during Growth: Molecular Dynamics Simulations[J]. Physical Review B, 2007, 75(3):035425.
[11]CHEN C X, ZHANG C H, KATO T, et al. Evolution of Tribo-induced Interfacial Nanostructures Governing Superlubricity in a-C∶H and a-C∶H∶Si Films[J]. Nature Communications, 2017, 8(1): 1675.
[12]SPIKES H. Stress-augmented Thermal Activation: Tribology Feels the Force[J]. Friction, 2018, 6(1): 1-31.
[13]WANG Y F, GAO K X, ZHANG B, et al. Structure Effects of sp2-rich Carbon Films under Super-low Friction Contact[J]. Carbon, 2018, 137: 49-56.
[14]YUE Z F, WANG Y F, ZHANG J Y. Microstructure Changes of Self-mated Fullerene-like Hydrogenated Carbon Films from Low Friction to Super-low Friction with the Increasing Normal Load[J]. Diam. Relat. Mater., 2018, 88: 276-281.
[15]FUKUMASU N K, BERNARDES C F, RAMIREZ M A, et al. Local Transformation of Amorphous Hydrogenated Carbon Coating Induced by High Contact Pressure[J]. Tribol. Int., 2018, 124: 200-208.
[16]LIU Y H, YU B J, CAO Z Y, et al. Probing Superlubricity Stabilityof Hydrogenated Diamond-like Carbon Film by Varying Sliding Velocity[J]. Appl. Surf. Sci., 2018, 439: 976-982.
[17]BHOWMICK S, KHAN M Z U, BANERJI A, et al. Low Friction and Wear Behaviour of Non-hydrogenated DLC (a-C) Sliding against Fluorinated Tetrahedral Amorphous Carbon (ta-C-F) at Elevated Temperatures[J]. Appl. Surf. Sci., 2018, 450: 274-283.
[18]HILBERT J, MANGOLINI F, MCCLIMON J B, et al. Si Doping Enhances the Thermal Stability of Diamond-like Carbon through Reductions in Carbon-carbon Bond Length Disorder[J]. Carbon, 2018, 131: 72-78.
[19]WANG Y, XU J X, ZHANG J, et al. Tribochemical Reactions and Graphitization of Diamond-like Carbon against Alumina Give Volcano-type Temperature Dependence of Friction Coefficients: a tight-binding Quantum Chemical Molecular Dynamics Simulation[J]. Carbon, 2018, 133: 350-357.
[20]SHI J, XIA T D, WANG C B, et al. Ultra-low Friction Mechanism of Highly sp3-hybridized Amorphous Carbon Controlled by Interfacial Molecule Adsorption[J]. Phys. Chem. Chem. Phys., 2018, 20(35): 22445-22454.
[21]HIRANO M, SHINJO K. Atomistic Locking and Friction[J].Phys. Rev. B, 1990, 41(17): 11837-11851.
[22]DIENWIEBEL M, VERHOEVEN G S, PRADEEP N, et al. Superlubricity of Graphite[J].Phys. Rev. Lett., 2004, 92(12): 126101.
[23]NIAN J Y, CHEN L W, GUO Z G, et al. Computational Investigation of the Lubrication Behaviors of Dioxides and Disulfides of Molybdenum and Tungsten in Vacuum[J].Friction, 2017, 5(1): 23-31.
[24]KY D L C, KHAC B C T, LE C T, et al. Friction Characteristics of Mechanically Exfoliated and CVD-grown Single-layer MoS2[J]. Friction, 2018, 6(4): 395-406.
[25]BRAZDA T, SILVA A, MANINI N, et al. Experimental Observation of the Aubry Transition in Two-dimensional Colloidal Monolayers[J].Phys. Rev. X, 2018, 8(1): 011050.
[26]SINCLAIR R C, SUTER J L, COVENEY P V. Graphene-Graphene Interactions: Friction, Superlubricity, and Exfoliation[J]. Adv. Mater., 2018, 30(13): 1705791.
[27]WANG L F, MA T B, HU Y Z, et al. Superlubricity of Two-dimensional Fluorographene/MoS2 Heterostructure: a First-principles Study[J]. Nanotechnology, 2014, 25(38): 385701.
[28]HOD O. The Registry Index: a Quantitative Measure of Materials' Interfacial Commensurability[J].Chem. Phys. Chem., 2013, 14(11): 2376-2391.
[29]SONG Y M, MANDELLI D, HOD O, et al. Robust Microscale Superlubricity in Graphite/Hexagonal Boron Nitride Layered Heterojunctions[J]. Nature Mater., 2018, 17(10): 894-899.
[30]LIU Y M, SONG A S, XU Z, et al. Interlayer Friction and Superlubricity in Single-crystalline Contact Enabled by Two-dimensional Flake-wrapped Atomic Force Microscope Tips[J]. ACS Nano, 2018, 12(8): 7638-7646.
[31]ZHOU X, JIN K, CONG X, et al. Interlayer Interaction on Twisted Interface in Incommensurate Stacking MoS2: a Raman Spectroscopy Study[J]. J. Colloid. Interface. Sci., 2019, 538: 159-164.
[32]DIETZEL D, WIJN A S, VORHOLZER M, et al. Friction Fluctuations of Gold Nanoparticles in the Superlubric Regime[J].Nanotechnology, 2018, 29(15): 155702.
[33]BCH H, ROSSI A, FORTI S, et al. Superlubricity of Epitaxial Monolayer WS2 on Graphene[J]. Nano Res., 2018, 11(11): 5946-5956.
[34]SADEGHI A. Superlubricity Controlled by the Multiatomic Nature of Nanocontacts[J].Phys. Rev. B, 2018, 98(7): 075407.
[35]SUN J H, ZHANG Y N, LU Z B, et al. Superlubricity Enabled by Pressure-induced Friction Collapse[J]. J. Phys. Chem. Lett., 2018, 9(10): 2554-2559.
[36]LIU Z, YANG J R, GREY F, et al. Observation of Microscale Superlubricity in Graphite[J].Phys. Rev. Lett., 2012, 108(20): 205503.
[37]ZHANG R F, NING Z Y, ZHANG Y Y, et al. Superlubricity in Centimetres-long Double-walled Carbon Nanotubes under Ambient Conditions[J]. Nat. Nanotechnol., 2013, 8(12): 912-916.
[38]LIU S W, WANG H P, XU Q, et al. Robust Microscale Superlubricity under High Contact Pressure Enabled by Graphene-coated Microsphere[J]. Nature Communications, 2017, 8: 14029.
[39]LIU B T, WANG J, PENG X N, et al. Direct Fabrication of Graphite-mica Heterojunction and in Situ Control of Their Relative Orientation[J]. Mater. Des., 2018, 160: 371-376.
[40]BERMAN D, DESHMUKH S A, SANKARANARAYANAN S K R S, et al. Macroscale Superlubricity Enabled by Graphene Nanoscroll Formation[J]. Science, 2015, 348: 1118-1122.
[41]BERMAN D, NARAYANAN B, CHERUKARA M J, et al. Operando Tribochemical Formation of Onion-like-carbon Leads to Macroscale Superlubricity[J]. Nature Communications, 2018, 9(1): 1164.
[42]LIU H, WANG C, ZUO Z G, et al. Direct Visualization of Exciton Transport in Defective Few-layer WS2 by Ultrafast Microscopy[J/OL].Advanced Materials, 2019[2019-12-10]. https:∥doi 10.1002/adma.201906540.
[43]HOD O, MEYER E, ZHENG Q, et al. Structural Superlubricity and Ultralow Frictionacross the Length Scales[J]. Nature, 2018, 563: 485-492.
[44]WU P R, LI W, FENG Y M, et al. Fabrication and Tribological Properties of Oil-soluble MoS2 Nanosheets Decorated by Oleic Diethanolamide Borate[J]. J. of Alloys and Compounds, 2019, 770: 441-450.
[45]WANG Y, DU Y, DENG J, et al. Friction Reduction of Water Based Lubricant with Highly Dispersed Functional MoS2 Nanosheets[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2019, 562: 321-328.
[46]TOMALA A, RIPOLL M R, KOGOVSEK J, et al. Synergisms and Antagonisms between MoS2 Nanotubes and Representative Oil Additives under Various Contact Conditions[J]. Tribology International, 2019, 129: 137-150.
[47]WU P R, LIU Z, CHENG Z L. Growth of MoS2 Nanotubes Templated by Halloysite Nanotubes for the Reduction of Friction in Oil[J]. ACS Omega, 2018, 3(11): 15002-15008.
[48]WU J, MU L, ZHU J, et al. Synthesis of Hollow Fullerene-like Molybdenum Disulfide/Reduced Graphene Oxide Nanocomposites with Excellent Lubricating Properties[J]. Carbon, 2018, 134: 423-430.
[49]XU Y, GENG J, PENG Y, et al. Lubricating Mechanism of Fe3O4@MoS2 Core-shell Nanocomposites as Oil Additives for Steel/Steel Contact[J]. Tribology International, 2018, 121: 241-251.
[50]CHENG L, HU E, CHAO X, et al. MoS2/Montmorillonite Nanocomposite: Preparation, Tribological Properties, and Inner Synergistic Lubrication[J]. Nano, 2018, 13(12): 1850144.
[51]WANG W, XIE G X, LUO J B. Black Phosphorus as a New Lubricant[J]. Friction, 2018, 6(1): 116-142.
[52]WANG W, XIE G X, LUO J B. Superlubricity of Black Phosphorus as Lubricant Additive[J]. ACS Appl. Mater. & Interfaces, 2018, 10(49): 43203-43210.
[53]WU S, HE F, XIE G X, et al. Black Phosphorus: Degradation Favors Lubrication[J]. Nano letters, 2018, 18(9): 5618-5627.
[54]BONDAREV A V, KOVALSKII A M, FIRESTEIN K L, et al. Hollow Spherical and Nanosheet-base BN Nanoparticles as Perspective Additives to Oil Lubricants: Correlation between Large-scale Friction Behavior and in Situ TEM Compression Testing[J]. Ceramics International, 2018, 44(6): 6801-6809.
[55]YANG Y F, WANG X B, MEI S, et al. Preparation and Tribological Properties of BN/Calcium Borate Nanocomposites as Additive in Lubricating Oil[J]. Industrial Lubrication and Tribology, 2018, 70(1): 105-114.
[56]LI S, REN L L, BAI Z M. Friction Performance and Mechanisms of Calcined Products of Mg/Al Layered Double Hydroxides as Lubricant Additives[J]. Applied Surface Science, 2019, 470: 979-990.
[57]XUE M Q, WANG Z P, YUAN F, et al. Preparation of TiO2/Ti3C2Tx Hybrid Nanocomposites and Their Tribological Properties as Base Oil Lubricant Additives[J]. RSC Advances, 2017, 7(8): 4312-4319.
[58]LUO J B, LU X C, WEN S Z. Developments and Unsolved Problems in Nano-lubrication[J]. Progress in Natural Science, 2001, 11(3): 173-183.
[59]KLEIN J, KUMACHEVA K, MAHALU D, et al. Reduction of Frictional Forces between Solid Surfaces Bearing Polymer Brushes[J]. Nature, 1994, 370:634-636.
[60]ZHOU F, WANG X L, KATO K J, et al. Friction and Wear Property of a-CNx Coatings Sliding against Si3N4 Balls in Water[J]. Wear, 2007, 263: 1253-1258.
[61]MATTA C, JOLY-POTTUZ L, BOUCHET M I D, et al. Superlubricity and Tribochemistry of Polyhydric Alcohols[J]. Physical Review B, 2008, 78(8): 085436.
[62]MA L R, GAISINSKAYA-KIPNIS A, KAMPF N, et al. Origins of Hydration Lubrication[J]. Nature Communications, 2015, 6(1): 6060.
[63]ZHANG S M, ZHANG C H, LI K, et al. Investigation of Ultra-low Friction on Steel Surfaces with Diketone Lubricants[J]. RSC Advances, 2018, 8(17): 9402-9408.
[64]LI J J, ZHANG C H, SUN L, et al. Analysis of Measurement Inaccuracy in Superlubricity Tests[J].Tribology Transactions, 2013, 56(1): 141-147.
[65]DENG M M, ZHANG C H, LI J J, et al. Hydrodynamic Effect on the Superlubricity of Phosphoric Acidbetween Ceramic and Sapphire[J]. Friction, 2014, 2(2): 173-181.
[66]LUO J B, DENG M M, ZHANG C H. Advances in Superlubricity[C]∥Plenary Talk at ITS-IFToMM 2017. Jeju, 2017.
[67]DENG M M. Investigation of Liquid Superlubricity Mechansim[D]. Beijing: Tsinghua University, 2017.
[68]DENG M M, LI J J, ZHANG C H, et al. Investigation of Running-in Process in Water-based Lubrication Aimed at Achieving Super-low Friction[J].Tribology International, 2016, 102: 257-264.
[69]MA Z Z, ZHANG C H, LUO J B, et al. Superlubricity of a Mixed Aqueous Solution[J]. Chinese Physics Letters, 2011, 28(5): 056201.
[70]LI J J, ZHANG C H, LUO J B. Superlubricity Achieved with Mixtures of Polyhydroxy Alcohols and Acids[J]. Langmuir, 2013, 29(17): 5239-5245.
[71]CHEN Z, LIU Y H, ZHANG S H, et al. Controllable Super lubricity of Glycerol Solution via Environment Humidity[J]. Langmuir, 2013, 29(38): 11924-11930.
[72]LI J J, ZHANG C H, DENG M M, et al. Superlubricity of Silicone Oil Achieved between Two Surfaces by Running-in with Acid Solution[J]. RSC Advances, 2015, 5(39): 30861-30868.
[73]LI J J, ZHANG C H, CHENG P, et al. AFM Studies on Liquid Superlubricity between Silica Surfaces Achieved with Surfactant Micelles[J]. Langmuir, 2016, 32(22): 5593-5599.
[74]GE X, LI J, ZHANG C, et al. Liquid Superlubricity of Polyethylene Glycol Aqueous Solution Achieved with Boric Acid Additive[J]. Langmuir, 2018, 34: 3578.
[75]LI J J, ZHANG C H, LUO J B. Superlubricity Behavior with Phosphoric Acid-water Network Induced by Rubbing[J]. Langmuir, 2011, 27(15): 9413-9417.
[76]GE X, LI J J, ZHANG C H, et al. Superlubricity of 1-ethyl-3-methylimidazolium Trifluoromethanesulfonate Ionic Liquid Induced by Tribochemical Reactions[J]. Langmuir, 2018, 34: 5245-5252.
[77]HAN T Y, ZHANG C H, LUO J B. Macroscalesuperlubricity Enabled by hydrated Alkali Metal Ions[J]. Langmuir, 2018, 34(38): 11281-11291.
[78]WANG H D, LIU Y H, LI J J, et al. Investigation of Superlubricity Achieved by Polyalkylene Glycol Aqueous Solutions[J]. Adv. Mater. Interfaces, 2016, 3(19): 1600531.
[79]WANG H D, LIU Y H, LIU W R, et al. Superlubricity of Polyalkylene Glycol Aqueous Solutions Enabled by Ultrathin Layered Double Hydroxide Nanosheets[J]. ACS Appl. Mater. Interfaces, 2019, 11(22): 20249-20256.
[80]LI J J, CAO W, WANG Z N, et al. Origin of Hydration Lubrication of Zwitterions on Graphene[J]. Nanoscale, 2018, 10(35): 16887-16894.
[81]LI J J, LUO J B. Normal and Frictional Force Hysteresis Between Self-assembled Fluorosurfactant Micelle Arrays at the Nanoscale[J]. Advanced Materials Interfaces, 2018, 5(4): 1700802.
[82]LUO J B, WEN S Z, HUANG P. Thin Film Lubrication, Part I: the Transition between EHL and Thin Film Lubrication[J].Wear, 1996, 194: 107-115.
[83]MA L R, LUO J B. Thin Film Lubrication in the Past 20 Years[J]. Friction, 2016, 4(4): 280-302.
[84]JOHNSTON G J, WAYTE R, SPIKES H A. Boundary Film Formation by Lubricant Base Fluids[J]. STLE Tribology Transactions, 1991, 34(2): 187-194.
[85]GUANGTENG G, SPIKES H A. The Measurement and Study of Very Thin Lubricant Films in Concentrated Contacts[J].Tribology Transactions, 1996, 39(2): 448-454.
[86]LUO J B, HUANG P, WEN S Z, et al. Characteristics of Liquid Lubricant Films at the Nano-Scale[J]. Journal of Tribology, 1999, 121(4): 872-878.
[87]LUO J B, QIAN L M, WEN S, et al. The Failure of Fluid Film at Nanometer Scale[J]. STLE Tribology Transactions, 1999, 42 (2): 912-916.
[88]LUO J B, SHEN M W, WEN S Z. Tribological Properties of Nanoliquid Film under an External Electric Field[J]. Journal of Applied Physics, 2004, 96(11): 6733-6738.
[89]LUO J B, HE Y, ZHONG M, et al. Gas Bubble Phenomenon in Nanoscale Liquid Film under External Electric Field[J]. Applied Physics Letters, 2006, 8(1): 013104.
[90]XIE G X, LUO J B, LIU S H, et al. “Freezing” of Nanoconfined Fluids under an Electric Field[J]. Langmuir, 2010, 26(3): 1445-1448.
[91]XIE G X, LUO J B, GUO D, et al. Nanoconfined Ionic Liquids under Electric Fields[J]. Applied Physics Letters, 2010, 96(4): 043112.
[92]XIE G X, LI G, LUO J B, et al. Effects of Electric Field on Characteristics of Nano-confined Lubricantfilms with ZDDP Additive[J]. Tribology International, 2010, 43(5/6): 975-980.
[93]MA L R, LUO J B, ZHANG C H, et al. Effect of Microcontent of Oil in Water under Confined Condition[J]. Applied Physics Letters, 2009, 95(9): 091908.
[94]LIU S H, LUO J B, LI G, et al, Effect of Surface Physicochemical Properties on the Lubricating Properties of Water Film[J]. Applied Physics Letters, 2008, 254(22): 7137-7142.
[95]HARTL M, KRUPKA I, POLISCUK R, et al. Thin Film Colorimetric Interferometry[J].Tribology Transactions, 2001, 44(2): 270-276.
[96]THOMPSON P A, GREST G S, ROBBINS M O. Phase Transitions and Universal in Confined Films[J].Physics Review Letters, 1992, 68(23): 3448-3451.
[97]HU Y Z, GRANICK S. Microscopic Study of Thin Film Lubrication and Its Contributions to Macroscopic Tribology[J]. Tribology Letters, 1998, 5(1): 81-88.
[98]ISRAELACHVILI J N, TABOR D. The Measurement of van der Waals Dispersion Forces in the Range 1.5 to 130 nm[J]. Proc. R. Soc. A, 1972, 331: 19-38.
[99]ALSTEN J V, GRANICK S. Friction Measured with a Surface Force Apparatus[J]. Tribology Transactions, 1989, 32(2): 246-250.
[100]GRANICK S. Motions and Relaxation of Confined Liquid[J]. Science, 1991, 253(5026):1374-1379.
[101]GUANGTENG G, SCHMITT F J, ROBERT H, et al. Thin Film Rheology and Tribology of Confined Polymer Melts: Contrasts with Bulk Properties[J]. Macromolecules, 1997, 30(8): 2482-2494.
[102]KLEIN J, KUMACHEVA K, MAHALU D, et al. Reduction of Frictional Forces between Solid Surfaces Bearing Polymer Brushes[J]. Nature, 1994, 370: 634-636.
[103]ZHANG S H, QIAO Y J, LIU Y H, et al. Molecular Behaviors in Thin Film Lubrication-Part One: Film Formation for Different Polarities of Molecules[J]. Friction, 2019, 7(4): 327-387.
[104]GAO M, LI H Y, MA L R, et al. Molecular Behaviors in Thin Film Lubrication—Part Two: Direct Observation of the Molecular Orientation Near the Solid Surface[J]. Friction, 2019, 7(5): 479-488.
[105]LIU H C, GUO F, GUO L, et al. A Dichromatic Interference Intensity Modulation Approach to Measurement of Lubricating Film Thickness[J]. Tribology Letters, 2015, 58(1): 1-11.
[106]褚晓东,郭艳青,李霞,等.定倾面接触润滑薄膜测量系统[J].中国机械工程,2012, 23(16): 1912-1916.
CHU X D, GUO Y Q, LI X, et al. Development of Measuring System for Thin Lubrication Film in a Fixed-incline Conformal Contact[J]. China Mechanical Engineering, 2012, 23(16): 1912-1916.
[107]GUO F, WONG P L, LUO J B. Guest Editorial: Special Issue on Thin Film Lubrication[J]. Friction, 2016, 4(4): 277-279.
[108]GUO F, WONG P L, LUO J B. Boundary Yield Stress and Interfacial Potential Energy Barrier in Thin Film Hydrodynamic Lubrication[J]. Tribology Letters, 2015, 62(1): 1-11.
[109]GUO L, WONG P L, GUO F. Effects of Viscosity and Sliding Speed on Boundary Slippage in Thin Film Hydrodynamic Lubrication[J].Tribology International, 2017, 107: 85-93.
[110]CUSSEAU P, VERGNE P, MARTINIE L, et al. Film Forming Capability of Polymer-base Oil Lubricants in Elastohydrodynamic and Very Thin Film Regimes[J].Tribology Letters, 2019, 67(2): 45.
[111]WOLOSZYNSKI T, TOUCHE T, PODSIADLO P, et al. Effects of Nanoscale Ripple Texture on Friction and Film Thickness in EHL Contacts[J].Tribology Letters, 2019, 67(1): 16.
[112]ZHANG Y G, WANG W Z, LIANG H, et al. Layered Oil Slip Model for Investigation of Film Thickness Behaviours at High Speed Conditions[J]. Tribology International, 2019, 131: 137-147.
[113]LIANG H, GUO D, LUO J B. Film Forming Behavior in Thin Film Lubrication at High Speeds[J]. Friction, 2018, 6(2): 156-163.
[114]GE X Y, HALMANS T, LI J J, et al. Molecular Behaviors in Thin Film Lubrication—Part Three: Superlubricity Attained by Polar and Nonpolar Molecules[J]. Friction, 2019, 7(6): 625-636.
[115]LI K, ZHANG S M, LIU D S, et al. Superlubricity of 1,3-diketone Based on Autonomous Viscosity Control at Various Velocities[J]. Tribology International, 2018, 126: 127-132.
[116]DAIC' M, STANKOVIC' I, GKAGKAS K. Influence of Confinement on Flow and Lubrication Properties of a Salt Model Ionic Liquid Investigated with Molecular Dynamics[J].The European Physical Journal E, 2018, 41(11): 130.
[117]ZHANG F, FANG C, QIAO R. Effects of Water on Mica-Ionic Liquid Interfaces[J].The Journal of Physical Chemistry C,2018, 122(16):9035-9045.
[118]FREITAS A A D, SHIMIZU K, SMITH A M, et al. Structure and Dynamics of Mica-confined Films of [C10C1Pyrr][NTf2] Ionic Liquid[J].J. of Chemical Physics, 2018, 148(19): 193808.
[119]LI W, KUMARA C, MEYER Ⅲ H M, et al. Compatibility between Various Ionic Liquids and an Organic FrictionModifier as Lubricant Additives[J]. Langmuir, 2018, 34(36): 10711-10720.
[120]GONG X, LI L. Nanometer-Thick Ionic Liquids as Boundary Lubricants[J]. Advanced Engineering Materials, 2018, 20(5): 1700617.
[121]LHERMEROUT R, DIEDERICHS C, PERKIN S. Are Ionic Liquids Good Boundary Lubricants? a Molecular Perspective[J]. Lubricants, 2018, 6(1): 9.
[122]JIANG C, LI W M, NIAN J Y, et al. Tribological Evaluation of Environmentally Friendly Ionic Liquids Derived from Renewable Biomaterials[J].Friction, 2018, 6(2): 208-218.
[123]AMANN T, GATTI F, OBERLE N, et al. Galvanically Induced Potentials to Enable Minimal Tribochemical Wear of Stainless Steel Lubricated with Sodium Chloride and Ionic Liquid Aqueous Solution[J]. Friction, 2018, 6(2): 230-242.
[124]GE X Y, LI J J, ZHANG C H, et al. Superlubricity and Antiwear Properties of In Situ Formed Ionic Liquids at Ceramic Interfaces Induced by Tribochemical Reactions[J]. ACS Applied Materials & Interfaces, 2019, 11(6): 6568-6574.
[125]GUO Z W, YUAN C Q, BAI X Q, et al. Experimental Study on Wear Performance and Oil Film Characteristics of Surface Textured Cylinder Liner in Marine Diesel Engine[J]. Chinese Journal of Mechanical Engineering, 2018, 31(1): 52.
[126]WANG X, LI Y, LIU J S, et al. Molecular Structure Design of Diesel Anti-wear Agents[J]. Acta Petrolei Sinica, 2018, 34(2): 229-237.
[127]SHI H Y, LU X C, LIU Y H, et al. Nanotribological Study of Supramolecular Template Networks Induced by Hydrogen Bonds and van der Waals Forces[J]. ACS Nano, 2018, 12(8): 8781-8790.
[128]KRASS M D, KRMER G, DELLWO U, et al. Molecular Layering in Nanometer-confined Lubricants[J].Tribology Letters, 2018, 66(3): 87.
[129]OKUBO H, SASAKI S. Frequency-modulation Atomic Force Microscopic Observation for Ultralow Frictional Solid-liquid Interface of Diamond-like Carbon in an Environmentally Friendly Oil[J]. Tribology Letters, 2019, 67(1): 3.
[130]ZENG Q. Understanding the Lubrication Mechanism between the Polyhydroxyl Group Lubricants and Metal Surfaces[J]. Journal of Adhesion Science & Technology, 2018, 32(17):1911-1924.
[131]TA T D, TIEU A K, ZHU H, et al. Influence of Molecular Structure on Lubrication of Aqueous Triblock Copolymer Lubricants between Rutile Surfaces: an MD Approach[J]. Tribology International, 2019, 130: 170-183.
[132]EWEN J P, HEYES D M, DINI D. Advances in Nonequilibrium Molecular Dynamics Simulations of Lubricants and Additives[J]. Friction, 2018, 6(4): 349-386.
[133]XU R G, LENG Y. Squeezing and Stick-slip Friction Behaviors of Lubricants in Boundary Lubrication[J]. Proceedings of the National Academy of Sciences, 2018, 115(26): 6560-6565.
[134]ZHAO J, LI Y R, HE Y Y, et al. In Situ Green Synthesis of the New Sandwichlike Nanostructure of Mn3O4/Graphene as Lubricant Additives[J]. ACS Appl. Mater. & Interfaces, 2019, 11(40): 36931-36938.
[135]WANG H D, LIU Y H, LIU W R, et al. Tribological Behavior of NiAI-layered Double Hydroxide Nanoplatelets as Oil-based Lubricant Additives, ACS Appl.[J]. Mater. Interfaces, 2017, 9(36): 30891-30899.
[136]WENG L J, WANG H Z, FENG D P, et al. Tribological Behavior of the Synthetic Chlorine- and Fluorine-containing Silicon Oil as Aerospace Lubricant[J]. Industrial Lubrication and Tribology, 2008, 60(5): 216-221.
[137]GAO X M, HU M, FU L J, et al. Response of MoS2-Sb2O3 Film to Low-earth-orbit Space Environment[J]. Materials Letters, 2018, 227: 161-164.
[138]CHEN J, ZHEN J M, ZHU S Y, et al. Friction and Wear Behavior of Ni-based Solid-lubricating Composites at High Temperature in a Vacuum Environment[J]. Materials & Design, 2017, 122: 405-413.
[139]HU M, GAO X M, SUN J Y, et al. The Effects of Nanoscaled Amorphous Si and SiNx Protective Layers on the Atomic Oxygen Resistant and Tribological Properties of Ag Film[J]. Applied Surface Science, 2012, 285(15): 5683-5688.
[140]GAO X M, FU L Y, JIANG D, et al. Constructing WS2/MoS2 Nano-scale Multilayer Film and Understanding Its Positive Response to Space Environment[J]. Surface & Coatings Technology, 2018, 353: 8-17.
[141]CHEN S, LI J, WEI L, et al. Tribological Properties of Polyimide-modified UHMWPE for Bushing Materials of Seawater Lubricated Sliding Bearings[J]. Tribology International, 2017, 115: 470-476.
[142]LI Z X, YAN X P, GUO Z W, et al. A New Intelligent Fusion Method of Multi-dimensional Sensors and Its Application to Tribo-system Fault Diagnosis of Marine Diesel Engines[J]. Tribology Letters, 2012, 47(1): 1-15.
[143]YAN X P, XU X J, SHENG C X, et al. Intelligent Wear Mode Identification System for Marine Diesel Engines Based on Multi-level Belief Rule Base Methodology[J]. Measurement Science & Technology, 2018, 29(1): 015110.
[144]SUN Y W, YAN X P, YUAN C Q, et al. Insight into Tribological Problems of Green Ship and Corresponding Research Progresses[J]. Friction, 2018, 6(4): 472-483.
[145]LIU C B, ZHAO H C, HOU P M, et al. Constructing WS2/MoS2 Nano-scale Multilayer Film and Understanding Its Positive Response to Space Environment[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36229-36239.
[146]LIU C B, QIU S H, DU P, et al. An Ionic Liquid-graphene Oxide Hybrid Nanomaterial: Synthesis and Anticorrosive Applications[J]. Nanoscale, 2018, 10(17): 8115-8124.
[147]WANG J D, WANG B, CHEN D R. Underwater Drag Reduction by Gas[J]. Friction, 2014, 2(4): 295-309.
[148]WANG B, WANG J D, DOU Z L, et al. Investigation of Retention of Gases in Transverse Hydrophobic Microgrooved Surfaces for Drag Reduction[J].Ocean Engineering, 2014, 79: 58-66.
[149]WANG B, WANG J D, CHEN D R, et al. Experimental Investigation on Underwater Drag Reduction Using Partial Cavitation[J]. Chinese Physics B, 2017, 26(5): 054701.
[150]LIANG H, GUO D, LUO J B. Experimental Investigation of Lubrication Film Starvation of Polyalphaolefin Oil at High Speeds[J]. Tribology Letters, 2014, 56(3): 491-500.
[151]LIANG H, GUO D, MA L R, et al. Increased Film Thickness of Oil-in-water(O/W) Emulsions at High Speed[J]. Tribology Letters, 2017, 65(2): 68-73.
[152]ZHANG L, REN Y T, PENG S G, et al. Core-shell Nanospheres to Achieve Ultralow Friction Polymer Nanocomposites with Superior Mechanical Properties[J]. Nanoscale, 2019, 11(17): 8237-8246.
[153]ZHANG L, XIE G X, WU S, et al. Ultralow Friction Polymer Composites Incorporated with Monodispersed Oil Microcapsules[J/OL]. Friction, 2019[2019-12-11].https:∥doi.org/10.1007/s40544-019-0312-4.
[154]TAN X L, SUN Y L, SUN T, et al. Mechanised Lubricating Silica Nanoparticles for On-command Cargo Release on Simulated Surfaces of Joint Cavities[J]. Chemical Communications, 2019, 55(18): 2593-2596.
[155]YAN Y F, SUN T, ZHANG H B, et al. Euryale Ferox Seed-Inspired Superlubricated Nanoparticles for Treatment of Osteoarthritis[J]. Advanced Functional Materials, 2019, 29(4): 1807559.
[156]ZHENG J, ZHOU Z R, ZHANG J, et al. On the Friction and Wear Behaviour of Human Tooth Enamel and Dentin[J]. Wear, 2003, 255(7): 967-974.
[157]BARTHLOTT W, NEINHUIS C. Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces[J]. Planta, 1997, 202(1): 1-8.
[158]FENG L, LI S H, LI S Y, et al. Super-hydrophobic Surfaces: From Natural to Artificial[J]. Advanced Materials, 2002, 14(24): 1857-1860.
[159]ZHAO Y Y, YU C M, LAN H, et al. Improved Interfacial Floatability of Superhydrophobic/Superhydrophilic Janus Sheet Inspired by Lotus Leaf[J]. Advanced Functional Materials, 2017, 27(27): 1701466.
[160]WANG J D, CHEN H S, SUI T, et al. Investigation on Hydrophobicity of Lotus Leaf: Experiment and Theory[J]. Plant Science, 2009, 176(5): 687-695.
[161]CHEN H W, ZHANG P F, ZHANG L W, et al. Continuous Directional Water Transport on the Peristome Surface of Nepenthes Alata[J]. Nature, 2016, 532(7597): 85-89.
[162]TAO D S, GAO X, LU H Y, et al. Controllable Anisotropic Dry Adhesion in Vacuum: Gecko Inspired Wedged Surface Fabricated with Ultraprecision Diamond Cutting[J]. Advanced Functional Materials, 2017, 27(22): 1605576.
[163]LU H Y, ZHENG Y L, YIN W, et al. Propulsion Principles of Water Striders in Sculling Forward through Shadow Method[J]. Journal of Bionic Engineering, 2018, 15(3): 516-525.
[164]ZHENG Y L, LU H Y, JIANG J L, et al. Walking of Spider on Water Surface Studied From its Leg Shadows[J]. Chinese Physics B, 2018, 27(8): 084702.
[165]ZHENG Y L, LU H Y, YIN W, et al. Elegant Shadow Making Tiny Force Visible for Water-walking Arthropods and Updated Archimedes' Principle[J]. Langmuir, 2016, 32(41): 10522-10528.
[166]SHAHID E M, JAMAL Y A. A Review of Biodiesel as Vehicular Fuel[J]. Renewable & Sustainable Energy Reviews, 2016, 12(9): 2484-2494.
[167]SHARMA E M, JAMAL Y A. Lubricant Properties of Moringa Oil Using Thermal and Tribological Techniques[J]. Journal of Thermal Analysis and Calorimetry, 2009, 96(3): 999-1008.
[168]ROEGIERS M, ZHMUD B. Tribological Performance of Ionised Vegetable Oils as Lubricity and Fatty Oiliness Additives in Lubricants and Fuels[J]. Lubrication Science, 2009, 21(5): 169-182.
[169]XU J, LUO J B, LIU S H, et al. Tribological Characteristics of Aloe Mucilage[J].Tribol. Mater. Surf. Interfaces, 2008, 2: 72-76.
[170]ARAD S M, LEVY-ONTMAN O. Red Microalgal Cell-wall Polysaccharides: Biotechnological Aspects[J]. Current Opinion in Biotechnology, 2010, 21(3): 358-364.
[171]ARAD S M, RAPOPORT L, MOSHKOVICH A. Red Microalgal Cell-wall Polysaccharides: Biotechnological Aspects[J]. Langmuir, 2006, 22(17): 7313-7317.
[172]LI J J, LIU Y H, LUO J B, et al. Excellent Lubricating Behavior of Brasenia Schreberi Mucilage[J]. Langmuir, 2012, 28(20): 7797-7802.
[173]LIU P X, LIU Y H, YANG Y, et al. Mechanism of Biological Liquid Super Lubricity of Brasenia Schreberi Mucilage[J]. Langmuir, 2014, 30(13): 3811-3816.
[174]ZHAO J, LI Y R, MAO J Y, et al. Synthesis of Thermally Reduced Graphite Oxide in Sulfuric Acid and Its Application as an Efficient Lubrication Additive[J]. Tribology International, 2017, 116: 303-309.
[175]ZHAO J, MAO J Y, LI Y R, et al. Friction-induced Nano-structural Evolution of Graphene as a Lubrication Additive[J]. Applied Surface Science, 2018, 434: 21-27.
[176]ZHAO J, HE Y Y, WANG Y F, et al. An Investigation on the Tribological Properties of Multilayer Graphene and MoS2 Nanosheets as Additives Used in Hydraulic Applications[J]. Tribology International, 2016, 97: 14-20.
[177]RODRIGUEZ T R, GARCIA R. Compositional Mapping of Surfaces in Atomic Force Microscopy by Excitation of the Second Normal Mode of the Microcantilever[J]. Applied Physics Letters, 2004, 84(3): 449-451.
[178]SHI S, GUO D, LUO J B. Interfacial Interaction and Enhanced Image Contrasts in Higher Mode and Bimodal Mode Atomic Force Microscopy[J]. RSC Advances, 2017, 7(87): 55121-55130. [179]SHI S, GUO D, LUO J B. Enhanced Phase and Amplitude Image Contrasts of Polymers in Bimodal Atomic Force Microscopy[J]. RSC Advances, 2017, 7(19): 11768-11776.
[180]TAN X F, GUO D, LUO J B. Different Directional Energy Dissipation of Heterogeneous Polymers in Bimodal Atomic Force Microscopy[J]. RSC Advances, 2019, 9(47): 27464-27474.
[181]TAN X F, SHI S, GUO D, et al. Dynamical Characterization of Micro Cantilevers by Different Excitation Methods in Dynamic Atomic Force Microscopy[J]. Review of Scientific Instruments, 2018, 89(11): 115109.
[182]SOCOLIUC A, GNECCO E, MAIER S, et al. Atomic-scale Control of Friction by Actuation of Nanometer-sized Contacts[J]. Sciences, 2006, 313: 207-210.
[183]RIEDO E, GNECCO E, BENNEWITZ R, et al. Interaction Potential and Hopping Dynamics Governing Sliding Friction[J]. Physical Review Letters, 2003, 91(8): 084502. |
[1] | MA Qiaoying, YANG Shaopu, LIU Yongqiang, . Vibration and Lubrication Characteristics of Railway Vehicle Axle Box Bearings under Wheel-rail Excitation [J]. China Mechanical Engineering, 2024, 35(04): 580-590. |
[2] | ZHANG Yu, WANG Dexiang, GUO Feng, LI Xinming, . Molecular Dynamics Study on Tribological Mechanism of Spherical Nanoparticles on Nickel-based Alloy Grinding Interfaces under Nanofluid MQL [J]. China Mechanical Engineering, 2024, 35(03): 445-456. |
[3] | FU Zhenfeng, WANG Zhenzhong, WANG Biao. Research on Microfluidic Chip Fluid Dynamic Pressure Polishing Process [J]. China Mechanical Engineering, 2024, 35(03): 534-540. |
[4] | ZHANG Lifeng, ZHANG Xiaoguang. Machining Performance and Material Removal Mechanism of High-speed Milling of CFRP with Variable Angle under Minimal Quantity Lubrication [J]. China Mechanical Engineering, 2023, 34(21): 2622-2628. |
[5] | WEI Bingyang, GU Dewan, WANG Yongqiang, YANG Jianjun, . Friction Power Loss Analysis and Efficiency Test of High Reduction Hypoid Gears [J]. China Mechanical Engineering, 2023, 34(13): 1525-1532. |
[6] | PAN Ling, LIN Guobin, HAN Yuqing, YU Hui. Molecular Dynamics Simulation for Effect of Nanoparticle Additives on Boundary Lubrication [J]. China Mechanical Engineering, 2023, 34(10): 1140-1156. |
[7] | YE Shaogan, LAI Weiqun, HOU Liang, BU Xiangjian. Modeling and Experimental Validation of Lubrication Characteristics of Spherical Valve-plate Pairs with Conical Cylinder Block [J]. China Mechanical Engineering, 2022, 33(20): 2420-2428,2436. |
[8] | LIAO Yihong, ZHANG Guiming, XU Jing. Influence Law and Mechanism of Texturized Controllable Interfaces on Leakage of Steam Turbine Regulating Valves [J]. China Mechanical Engineering, 2022, 33(12): 1427-1434. |
[9] | LIANG Xingxin, ZHANG Sen, QI Shihuang, JIN Shuanbao. Experimental Study of Load Carrying Performance of Water Lubricated PCD Thrust Bearings for Rim Driven Thrusters [J]. China Mechanical Engineering, 2022, 33(12): 1452-1458,1467. |
[10] | HAN Cuihong, MA Guozheng, LI Guolu, SHI Jiadong, WANG Haidou, . Tribological Properties of Mo/MoS2-Pb-PbS Composite Films in Vacuum Environments [J]. China Mechanical Engineering, 2022, 33(12): 1477-1483. |
[11] | YU Guoda, LIU Huaiju, LU Zehua, WEI Peitang. Simulation and Experimental Study of Steady-state Temperature Field of Plastic Gears under Grease Lubrication Conditions#br# [J]. China Mechanical Engineering, 2022, 33(08): 890-898,907. |
[12] | YANG Jianzhang, WANG Chengyong, YUAN Yaohui, YUAN Songmei, WANG Xibin, LIANG Cile, LI Weiqiu. State-of-the-art on MQL Synergistic Technologies and Their Applications [J]. China Mechanical Engineering, 2022, 33(05): 506-528. |
[13] | LIU Mingzheng, LI Changhe, CAO Huajun, ZHANG Song, CHEN YunLIU Bo, ZHANG Naiqing, ZHOU Zongming. Research Progresses and Applications of CMQL Machining Technology [J]. China Mechanical Engineering, 2022, 33(05): 529-550. |
[14] | WANG Dexiang, ZHAO Qiliang, ZHANG Yu, GAO Teng, JIANG Jingliang, LIU Guoliang, LI Changhe, . Investigation on Tribological Mechanism of Ionic Liquid on Grinding Interfaces under MQL [J]. China Mechanical Engineering, 2022, 33(05): 560-568,606. |
[15] | LIANG Cile, YUAN Yaohui, WANG Chengyong, LI Weiqiu, YANG Jianzhang, WU Huayi. Study on Oil Mist Control and Oil Mist Particle Characteristics of MQL Systems [J]. China Mechanical Engineering, 2022, 33(05): 607-614. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||