Previous Articles Next Articles
CHEN Xuefeng;GUO Yanjie;XU Caibin;SHANG Hongbing
Online:
2020-01-25
Published:
2020-04-11
陈雪峰;郭艳婕;许才彬;商红兵
基金资助:
CLC Number:
CHEN Xuefeng, GUO Yanjie, XU Caibin, SHANG Hongbing. Review of Fault Diagnosis and Health Monitoring for Wind Power Equipment[J]. China Mechanical Engineering.
陈雪峰, 郭艳婕, 许才彬, 商红兵. [学科发展]风电装备故障诊断与健康监测研究综述[J]. 中国机械工程.
[1]CHU S, MAJUMDAR A. Opportunities and Challenges for a Sustainable Energy Future[J]. Nature, 2012, 488(7411): 294-303.
[2]CHEN Xuefeng, YAN Ruqiang, LIU Yanmeng, et al. Wind Turbine Condition Monitoring and Fault Diagnosis in China[J]. IEEE Instrumentation & Measurement Magazine, 2016, 19(2): 22-28.
[3]TAUTZ-WEINERT J, WATSON S J. Using SCADA Data for Wind Turbine Condition Monitoring: a Review[J]. IET Renewable Power Generation, 2017, 11:382-394.
[4]SU Chuang, HU Zhaoyong. Reliability Assessment for Chinese Domestic Wind Turbines Based on Data Mining Techniques[J]. Wind Energy, 2018, 21: 198-209.
[5]HIRTH L, MULLER S. System-friendly Wind Power How Advanced Wind Turbine Design Can Increase the Economic Value of Electricity Generated through Wind Power[J]. Energy Economics, 2016, 56: 51-63.
[6]中国可再生能源学会风能专业委员会. 2012年全国风电设备运行质量调查概述[J]. 风能, 2013(9):37-45.
Wind Energy Committee of China Renewable Energy Society. Overview of National Wind Power Equipment Operation Quality Survey in 2012[J]. Wind Energy, 2013(9):37-45.
[7]桂勇, 韩勤锴, 李峥, 等. 风机行星齿轮系统齿轮裂纹故障诊断[J]. 振动、测试与诊断, 2016(1):169-175.
GUI Yong, HAN Qinkai, LI Zheng, et al. The Fault Diagnosis of Cracks in the Planetary Gear System of Wind Turbine[J]. Journal of Vibration,Measurement & Diagnosis, 2016(1):169-175.
[8]YANG B Y, LIU R N, CHEN X F. Fault Diagnosis for Wind Turbine Generator Bearing via Sparse Representation and Shift-invariant K-SVD[J]. IEEE Transactions on Industrial Informatics, 2017,13(3): 1321-1331.
[9]YAZIDI A, CAPOLINO G A, FILIPPETTI F, et al. A New Monitoring System for Wind Turbines with Doubly-fed Induction Generators[C]∥ 2006 IEEE Mediterranean Electrotechnical Conference. Malaga, 2006: 1142-1145
[10]SRENSEN B F, JRGENSEN E, DEBEL C P, et al. Improved Design of Large Wind Turbine Blade of Fibre Composites Based on Studies of Scale Effects (Phase 1): Summary Report[R]. Roskilde: Ris National Laboratory, 2004.
[11]Caithness Windfarms Information Forum. Summary of Wind Turbine Accident Data to 31 March 2019[EB/OL]. Caithness: CWIF, 2019[2019-04-15].http:∥www.caithnesswindfarms.co.uk/AccidentStatistics.htm.
[12]CAWLEY P , ADAMS R D . The Location of Defects in Structures from Measurements of Natural Frequencies[J]. Journal of Strain Analysis, 1979, 14(2):49-57.
[13]WANG Zhiqiang, XU Yuxiu, MEI Yuanying. Damage Diagnosis for Wind Turbine Blades Based on the Shifting Distance of Characteristic Frequency[C]∥ 2nd International Congress on Image and Signal Processing. Tianjin, 2009: 1-3.
[14]ALLEMANG R J, BROWN D L. A Correlation Coefficient for Modal Vector Analysis[C]∥Proceedings of the 1st International Modal Analysis Conference. Orlando, 1982, 1: 110-116.
[15]YANG Zhibo, RADZIENSKI M, KUDELA P, et al. Fourier Spectral-based Modal Curvature Analysis and Its Application to Damage Detection in Beams[J]. Mechanical Systems and Signal Processing, 2017, 84: 763-781.
[16]YANG Zhibo, RADZIENSKI M, KUDELA P, et al. Two-dimensional Modal Curvature Estimation via Fourier Spectral Method for Damage Detection[J]. Composite Structures, 2016, 148: 155-167.
[17]HU Huiwen, WU Chengdu, LU Weijun. Damage Detection of Circular Hollow Cylinder Using Modal Strain Energy and Scanning Damage Index Methods[J]. Computers & structures, 2011, 89(1/2): 149-160.
[18]ZHANG J, LI P J, WU Z S . A New Flexibility-based Damage Index for Structural Damage Detection[J]. Smart Materials and Structures, 2013, 22(2):025037.
[19]张春峰, 文晓艳, 张东生,等. 基于光纤布拉格光栅的复合材料振动性能研究与损伤监测[J]. 玻璃钢/复合材料, 2017(8):15-19.
ZHANG Chunfeng, WEN Xiaoyan, ZHANG Dongsheng, et al. Study on Vibration Performance and Damaging Detection of Composite Materials Based on FBG[J]. Fiber Reinforced Plastics/Composites, 2017(8):15-19.
[20]李蓝天,赵恂.复合材料加筋板多失效模式可靠性分析[J].湖南科技大学学报(自然科学版),2017,32(2):52-57.
LI Lantian, ZHAO Xun. Reliability Analysis of Stiffened Composite Plates with Multiple Failure Modes[J]. Journal of Hunan University of Science & Technology(Natural Science Edition), 2017,32(2):52-57.
[21]PREZ M A, GIL L, OLLER S. Impact Damage Identification in Composite Laminates Using Vibration Testing[J]. Composite Structures, 2014, 108: 267-276.
[22]SHI Z Y, LAW S S, ZHANG L M. Structural Damage Detection from Modal Strain Energy Change[J]. Journal of Engineering Mechanics, 2000, 126(12): 1216-1223.
[23]ZHANG J, MOON F L. A New Impact Testing Method for Efficient Structural Flexibility Identification[J]. Smart Materials and Structures, 2012, 21(5): 055016.
[24]KOO K Y, SUNG S H, JUNG H J. Damage Quantification of Shear Buildings Using Deflections Obtained by Modal Flexibility[J]. Smart Materials and Structures, 2011, 20(4): 045010.
[25]TOMASZEWSKA A. Influence of Statistical Errors on Damage Detection Based on Structural Flexibility and Mode Shape Curvature[J]. Computers &Structures, 2010, 88(3/4): 154-164.
[26]LI Y Y. Hypersensitivity of Strain-based Indicators for Structural Damage Identification: a Review[J]. Mechanical Systems and Signal Processing, 2010, 24(3): 653-664.
[27]ZHANG J, GUO S L, WU Z, et al. Structural Identification and Damage Detection through Long-gauge Strain Measurements[J]. Engineering Structures, 2015,99: 173-183.
[28]LIANG C, SUN F P, ROGERS C A. An Impedance Method for Dynamic Analysis of Active Material Systems[J]. Journal of Vibration and Acoustics, 1994, 116(1): 120-128.
[29]LIANG C, SUN F P, ROGERS C A. Coupled Electro-mechanical Analysis of Adaptive Material Systems-determination of the Actuator Power Consumption and System Energy Transfer[J]. Journal of Intelligent Material Systems and Structures, 1997, 8(4): 335-343.
[30]LIM H J, KIM M K, SOHN H, et al. Impedance Based Damage Detection under Varying Temperature and Loading Conditions[J]. NDT & E International, 2011, 44(8):740-750.
[31]KOO K Y, PARK S, LEE J J , et al. Impedance-based Structural Health Monitoring Considering Temperature Effects[J]. Proceedings of the SPIE, 2007, 6532: 65320C.
[32]PITCHFORD C, GRISSO B L, INMAN D J. Impedance-based Structural Health Monitoring of Wind Turbine Blades[J]. Proceedings of the SPIE, 2007, 6532:65321I.
[33]BAPTISTA F, BUDOYA D, ALMEIDA V, et al. An Experimental Study on the Effect of Temperature on Piezoelectric Sensors for Impedance-based Structural Health Monitoring[J]. Sensors, 2014, 14(1):1208-1227.
[34]SU Zhongqing, YE Lin, LU Ye. Guided Lamb Waves for Identification of Damage in Composite Structures: a Review[J]. Journal of Sound and Vibration. 2006, 295(3/5): 753-780.
[35]ZUO Hao, YANG Zhibo, XU Caibin, et al. Damage Identification for Plate-like Structures Using Ultrasonic Guided Wave Based on Improved MUSIC Method[J]. Composite Structures, 2018, 203: 164-171.
[36]XU Caibin, YANG Zhibo, ZHAI Zhi, et al. A Weighted Sparse Reconstruction-based Ultrasonic Guided Wave Anomaly Imaging Method for Composite Laminates[J]. Composite Structures, 2019, 209: 233-241.
[37]徐冠基,许才彬,杨志勃,等.碳纤维层合板Lamb波损伤检测的加权块稀疏成像法[J].西安交通大学学报,2019,53(6):176-182.
XU Guanji, XU Caibin, YANG Zhibo, et al. Weighted Group-sparse Imaging Method for Lamb Wave Damage Detection of CFRP Laminates[J]. Journal of Xi'an Jiaotong University, 2019,53(6):176-182.
[38]GMEZ MUOZ C Q, GARCA MARQUEZ F P, HERNANDEZ CRESPO B, et al. Structural Health Monitoring for Delamination Detection and Location in Wind Turbine Blades Employing Guided Waves[J]. Wind Energy, 2019, 22(5): 698-711.
[39]YANG K, RONGONG J A, WORDEN K. Damage Detection in a Laboratory Wind Turbine Blade Using Techniques of Ultrasonic NDT and SHM[J]. Strain, 2018, 54(6): e12290.
[40]刘增华,曹瑾瑾,吴斌,等. 基于机电阻抗与超声导波综合技术的复合材料板损伤定位[J].北京工业大学学报,2018,44(5):699-707.
LIU Zenghua, CAO Jinjin , WU Bin , et al. Damage Location of Composite Plates Using Integrated Technology Based on Electromechanical Impedance and Ultrasonic Guided Waves[J]. Journal of Beijing University of Technology, 2018, 44(5):699-707.
[41]SHENG S. Gearbox Reliability Collaborative Update: PR-5000-60141[R]. Golden, Colorado: National Renewable Energy Laboratory (NREL), 2013.
[42]GAO Z, CECATI C, DING S X. A Survey of Fault Diagnosis and Fault-tolerant Techniques—Part I: Fault Diagnosis with Model-based and Signal-based Approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3757-3767.
[43]GAO Z, CECATI C, DING S X. A Survey of Fault Diagnosis and Fault-tolerant Techniques—Part II: Fault Diagnosis with Knowledge-based and Hybrid/Active Approaches[J]. IEEE Transactions on Industrial Electronics, 2015, 62(6): 3768-3774.
[44]WANG S, HUANG W, ZHU Z. Transient Modeling and Parameter Identification Based on Wavelet and Correlation Filtering for Rotating Machine Fault Diagnosis[J]. Mechanical Systems and Signal Processing, 2011, 25(4): 1299-1320.
[45]CHEN B Q, ZHANG Z S, ZI Y Y, et al. Detecting of Transient Vibration Signatures Using an Improved Fast Spatial-spectral Ensemble Kurtosis Kurtogram and Its Applications to Mechanical Signature Analysis of Short Duration Data from Rotating Machinery[J]. Mechanical Systems and Signal Processing, 2013, 40(1): 1-37.
[46]WANG Y, XU G, LIANG L, et al. Detection of Weak Transient Signals Based on Wavelet Packet Transform and Manifold Learning for Rolling Element Bearing Fault Diagnosis[J]. Mechanical Systems and Signal Processing, 2015, 54: 259-276.
[47]HE W, ZI Y, CHEN B, et al. Automatic Fault Feature Extraction of Mechanical Anomaly on Induction Motor Bearing Using Ensemble Super-wavelet Transform[J]. Mechanical Systems and Signal Processing, 2015, 54/55: 457-480.
[48]ZHANG C, LI B, CHEN B, et al. Weak Fault Signature Extraction of Rotating Machinery Using Flexible Analytic Wavelet Transform[J]. Mechanical Systems and Signal Processing, 2015, 64/65: 162-187.
[49]QIN Y, XING J, MAO Y. Weak Transient Fault Feature Extraction Based on an Optimized Morlet Wavelet and Kurtosis[J].Measurement Science and Technology, 2016, 27(8): 085003.
[50]HE S, CHEN J, ZHOU Z, et al. Multifractal Entropy Based Adaptive Multiwavelet Construction and Its Application for Mechanical Compound-fault Diagnosis[J].Mechanical Systems and Signal Processing, 2016, 76/77: 742-758.
[51]PAN J, CHEN J, ZI Y, et al. Data-driven Mono-component Feature Identification via Modified Nonlocal Means and MEWT for Mechanical Drivetrain Fault Diagnosis[J]. Mechanical Systems and Signal Processing, 2016, 80: 533-552.
[52]KHAKIPOUR M H, SAFAVI A A, SETOODEH P. Bearing Fault Diagnosis with Morphological Gradient Wavelet[J]. Journal of the Franklin Institute: Engineering and Applied Mathematics, 2017, 354(6): 2465-2476.
[53]LI Y, LIANG X, XU M, et al. Early Fault Feature Extraction of Rolling Bearing Based on ICD and Tunable Q-factor Wavelet Transform[J]. Mechanical Systems and Signal Processing, 2017, 86: 204-223.
[54]WANG D, TSUI K L. Dynamic Bayesian Wavelet Transform: New Methodology for Extraction of Repetitive Transients[J]. Mechanical Systems and Signal Processing, 2017, 88: 137-144.
[55]PENG Z K, CHU F L. Application of the Wavelet Transform in Machine Condition Monitoring and Fault Diagnostics: a Review with Bibliography[J]. Mechanical Systems and Signal Processing, 2004, 18(2): 199-221.
[56]YAN R, Gao R X, CHEN X. Wavelets for Fault Diagnosis of Rotary Machines: a Review with Applications[J]. Signal Processing, 2014, 96: 1-15.
[57]CHEN J, LI Z, PAN J, et al. Wavelet Transform Based on Inner Product in Fault Diagnosis of Rotating Machinery: a Review[J]. Mechanical Systems and Signal Processing, 2016, 70: 1-35.
[58]PENG Z, MENG G, CHU F, et al. Polynomial Chirplet Transform with Application to Instantaneous Frequency Estimation[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(9): 3222-3229.
[59]WIGNER E. On the Quantum Correction for Thermodynamic Equilibrium[J]. Physical Review, 1932, 40 (5): 749-759.
[60]DAUBECHIES I, LU J, WU H. Synchrosqueezed Wavelet Transforms: an Empirical Mode Decomposition-like Tool[J]. Applied and Computational Harmonic Analysis, 2011, 30(2): 243-261.
[61]CHUAN L, MING L. Time-Frequency Signal Analysis for Gearbox Fault Diagnosis Using a Generalized Synchrosqueezing Transform[J]. Mechanical Systems and Signal Processing, 2012, 26: 205-217.
[62]OLHEDE S, WALDEN A T. A Generalized Demodulation Approach to Time-Frequency Projections for Multicomponent Signals[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 461(2059): 2159-2179.
[63]WANG S, CHEN X, LI G, et al. Matching Demodulation Transform with Application to Feature Extraction of Rotor Rub-impact Fault[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(4): 1372-1383.
[64]GUO Y, CHEN X, WANG S, et al. Wind Turbine Diagnosis under Variable Speed Conditions Using a Single Sensor Based on the Synchrosqueezing Transform Method[J]. Sensors, 2017, 17(5): 1149.
[65]HUANG N E, SHEN Z, LONG S R, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis[J]. Proceedings of the Royal Society Amathematical Physical and Engineering Sciences, 1998, 454(1971): 903-995.
[66]WU Z, HUANG N E. Ensemble Empirical Mode Decomposition: a Noise-assisted Data Analysis Method[J]. Advances in Adaptive Data Analysis, Theory and Applications, 2009, 1(1): 1-41.
[67]HAO H, WANG H L, REHMAN N U. A Joint Framework for Multivariate Signal Denoising Using Multivariate Empirical Mode Decomposition[J]. Signal Processing, 2017, 135: 263-273.
[68]SMITH J S. The Local Mean Decomposition and Its Application to EEG Perception Data[J]. Journal of the Royal Society Interface, 2005, 2(5): 443-454.
[69]DRAGOMIRETSKIY K, ZOSSO D. Variational Mode Decomposition[J]. IEEE Transactionson Signal Processing, 2014, 62(3): 531-544.
[70]LI Z, CHEN J, ZI Y, et al. Independence-oriented VMD to Identify Fault Feature for Wheel Set Bearing Fault Diagnosis of High Speed Locomotive[J]. Mechanical Systems and Signal Processing, 2017, 85: 512-529.
[71]ANTONI J. The Spectral Kurtosis: a Useful Tool for Characterizing Non-stationary Signals[J]. Mechanical Systems and Signal Processing, 2006, 20(2): 282-307.
[72]DYER D, STEWART R M. Detection of Rolling Element Bearing Damage by Statistical Vibration Analysis[J]. Journal of Mechanical Design, 1978, 100(2): 229-235.
[73]ANTONI J. Fast Computation of the Kurtogram for the Detection of Transient Faults[J]. Mechanical Systems and Signal Processing, 2007, 21(1): 108-124.
[74]DONOHO D, TASIG Y, DRORI I, et al. Sparse Solution of Underdetermined Systems of Linear Equation by Stagewise Orthogonal Matching Pursuit[J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094-1121.
[75]WAGNER A, WRIGHT J, GANESH A, et al. Toward a Practical Face Recognition System: Robust Alignment and Illumination by Sparse Representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(2): 372-386.
[76]XU Y, ZHU Q, AN Z, et al. From the Idea of “Sparse Representation” to a Representation-based Transformation Method for Feature Extraction[J]. Neurocomputing, 2013, 113: 168-176.
[77]杜朝辉. 结构化稀疏学习诊断理论与特征辨识研究[D]. 西安:西安交通大学,2017.
DU Zhaohui. Structured Sparsity Learning Diagnostic Theory for Feature Recognition[D]. Xi'an: Xi'an Jiaotong University, 2017.
[78]CUI L, WU N, MA C, et al. Quantitative Fault Analysis of Roller Bearings Based on a Novel Matching Pursuit Method with a New Step-impulse Dictionary[J]. Mechanical Systems and Signal Processing, 2016, 68:34-43.
[79]LIU C , WU X , MAO J , et al. Acoustic Emission Signal Processing for Rolling Bearing Running State Assessment Using Compressive Sensing[J]. Mechanical Systems and Signal Processing, 2017, 91:395-406.
[80]SUN R, YANG Z, LUO W, et al. Weighted Sparse Representation Based on Failure Dynamics Simulation for Planetary Gearbox Fault Diagnosis[J]. Measurement Science and Technology, 2019, 30: 045008.
[81]DU Z H, CHEN X F, ZHANG H, et al. Compressed Sensing Based Periodic Impulsive Feature Detection for Wind Turbine Systems[J]. IEEE Transactions on Industrial Informatics, 2017,13(6):2933-2945.
[82]DU Z H, CHEN X F, ZHANG H, et al. Learning Collaborative Sparsity Structure via Nonconvex Optimization for Feature Recognition[J]. IEEE Transactions on Industrial Informatics, 2018, 14(10):4417-4430.
[83]DU Z H, CHEN X F, ZHANG H. Convolutional Sparse Learning for Blind Deconvolution and Application on Impulsive Feature Detection[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(2): 338-349.
[84]GUO Y J, ZHAO Z B, SUN R B, et al. Data-driven Multiscale Sparse Representation for Bearing Fault Diagnosis in Wind Turbine[J]. Wind Energy, 2019, 22(4):587-604.
[85]YIN S, DING S X, XIE X, et al. A Review on Basic Data-driven Approaches for Industrial Process Monitoring[J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6418-6428.
[86]LEI Y, JIA F, LIN J, et al. An Intelligent Fault Diagnosis Method Using Unsupervised Feature Learning towards Mechanical Big Data[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5): 3137-3147.
[87]张学工. 关于统计学习理论与支持向量机[J]. 自动化学报,2000, 26(1):32-42.
ZHANG Xuegong. Introduction to Statistical Learning Theory and Support Vector Machines[J]. Acta Automatica Sinica, 2000, 26(1):32-42.
[88]SHEN Z J, CHEN X F, ZHANG X L, et al. A Novel Intelligent Gear Fault Diagnosis Model Based on EMD and Multi-class TSVM[J]. Measurement, 2012, 45(1): 30-40.
[89]ZHANG X L, CHEN W, WANG B J, et al. Intelligent Fault Diagnosis of Rotating Machinery Using Support Vector Machine with Ant Colony Algorithm for Synchronous Feature Selection and Parameter Optimization[J]. Neurocomputing, 2015, 167: 260-279.
[90]ZHONG J, TSE P W, WANG D. Novel Bayesian Inference on Optimal Parameters of Support Vector Machines and Its Application to Industrial Survey Data Classification[J]. Neurocomputing, 2016, 211: 159-171.
[91]LIU Z W, GUO W, HU J H, et al. A Hybrid Intelligent Multi-fault Detection Method for Rotating Machinery Based on RSGWPT, KPCA and Twin SVM[J]. ISA Transactions, 2017, 66: 249-261.
[92]ZHENG J D, PAN H Y, CHENG J S. Rolling Bearing Fault Detection and Diagnosis Based on Composite Multiscale Fuzzy Entropy and Ensemble Support Vector Machines[J]. Mechanical Systems and Signal Processing, 2017, 85: 746-759.
[93]JIA F, LEI Y G, LIN J, et al. Deep Neural Networks: a Promising Tool for Fault Characteristic Mining and Intelligent Diagnosis of Rotating Machinery with Massive Data[J]. Mechanical Systems and Signal Processing, 2016, 72/73: 303-315.
[94]JANSSENS O, SLAVKOVIKJ V, VERVISCH B, et al. Convolutional Neural Network Based Fault Detection for Rotating Machinery[J]. Journal of Sound and Vibration, 2016, 377: 331-345.
[95]ABDELJABER O, AVCI O, KIRANYAZ S, et al. Real-time Vibration-based Structural Damage Detection Using One-dimensional Convolutional Neural Networks[J]. Journal of Sound and Vibration, 2017, 388: 154-170.
[96]INCE T, KIRANYAZ S, EREN L, et al. Real-time Motor Fault Detection by 1D Convolutional Neural Networks[J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 7067-7075.
[97]LU C, WANG Z Y, QIN W L, et al. Fault Diagnosis of Rotary Machinery Components Using a Stacked Denoising Autoencoder-based Health State Identification[J]. Signal Processing, 2017, 130: 377-388.
[98]LIU R N, MENG G T, YANG B Y, et al. Dislocated Time Series Convolutional Neural Architecture: an Intelligent Fault Diagnosis Approach for Electric Machine[J]. IEEE Transactions on Industrial Informatics, 2017, 13(3): 1310-1320.
[99]JING L Y, WANG T Y, ZHAO M, et al. An Adaptive Multi-sensor Data Fusion Method Based on Deep Convolutional Neural Networks for Fault Diagnosis of Planetary Gearbox[J]. Sensors, 2017, 17(2): 414.
[100]李志农, 何永勇, 褚福磊. 基于Wigner高阶谱的机械故障诊断的研究[J]. 机械工程学报, 2005,41(4):123-126.
LI Zhinong, HE Yongyong, CHU Fulei. Research on Mechanical Fault Diagnosis Based on Wigner Higher Order Spectrum [J]. Journal of Mechanical Engineering, 2005,41(4):123-126.
[101]左长青, 韩捷, 陈宏, 等. 矢Wigner高阶谱在齿轮故障诊断中的研究[J]. 机械设计与制造, 2011(10):127-129.
ZUO Changqing, HAN Jie, CHEN Hong, et al. Research on Vector Wigner Higher-order Spectrum in Gear Fault Diagnosis [J]. Machinery Design and Manufacture, 2011(10):127-129.
[102]蔡剑华,胡惟文,王先春. 基于高阶统计量的滚动轴承故障诊断方法[J]. 振动、测试与诊断, 2013,33(2): 298-301.
CAI Jianhua, HU Weiwen, WANG Xianchun. Fault Diagnosis Method of Rolling Bearing Based on High Order Statistics [J]. Journal of Vibration, Measurement and Diagnosis, 2013,33(2): 298-301.
[103]杨江天, 陈家骥, 曾子平. 基于高阶谱的旋转机械故障征兆提取[J]. 振动工程学报, 2001,14(1):17-22.
YANG Jiangtian, CHEN Jiaji,ZENG Ziping. Extracting Fault Features Using Higher Order Spectra for Rotating Machinery [J]. Journal of Vibration Engineering, 2001,14(1):17-22.
[104]POLA L M , JENSEN B B , RITCHIE E , et al. Condition Monitoring of Wind Generators[C]∥ Industry Applications Conference. Salt Lake City, 2003: 1839-1846.
[105]ESTEFANIA A, SOFIA K, ANDRES H, et al. Current Signature and Vibration Analyses to Diagnose an In-service Wind Turbine Drive Train[J]. Energies, 2018,11(5):960.
[106]HOSSAIN M, AHMED A, MUYEEN S. Methods for Advanced Wind Turbine Condition Monitoring and Early Diagnosis: a Literature Review[J].Energies, 2018, 11(5):1309.
[107]ZHANG P, LU D. A Survey of Condition Monitoring and Fault Diagnosis toward Integrated O&M for Wind Turbines[J].Energies, 2019, 12(14):2801.
[108]WANG L L, ZHAO Y, JIA W, et al. Fault Diagnosis Based on Current Signature Analysis for Stator Winding of Doubly Fed Induction Generator in Wind Turbine[C]∥ Proceedings of 2014 International Symposium on Electrical Insulating Materials. Niigata, 2014: 233-236.
[109]SHAH D, NANDI S, NETI P. Stator-interturn-fault Detection of Doubly Fed Induction Generators Using Rotor-current and Search-coil-voltage Signature Analysis[J]. IEEE Transactions on Industry Applications, 2009,45(5):1831-1842.
[110]ABADI M, CRUZ S, GONCALVES A, et al. Inter-turn Fault Detection in Doubly-Fed Induction Generators for Wind Turbine Applications Using the Stator Reactive Power Analysis[C]∥ 3rd Renewable Power Generation Conference. Naples, 2014:8-29.
[111]ZAPPALA D, SARMA N, DJUROVIC S, et al. Electrical & Mechanical Diagnostic Indicators of Wind Turbine Induction Generator Rotor Faults[J]. Renewable Energy, 2019, 131:14-24.
[112]ESTEFANIA A, ANDRES H, EMILIO G. Current Signature Analysis to Monitor DFIG Wind Turbine Generators: a Case Study[J]. Renewable Energy,2018,116: 5-14.
[113]HASSAN M A, BAYOUMI A M E, SHIN Y J. Quadratic-nonlinearity Index Based on Bicoherence and Its Application in Condition Monitoring of Drive-train Components[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 63(3): 719-728.
[114]SAIDI L, ALI J B, FNAIECH F. Bi-spectrum Based-EMD Applied to the Non-stationary Vibration Signals for Bearing Faults Diagnosis[J]. ISA Transactions, 2014, 53(5): 1650-1660.
[115]GU F, WANG T, ALWODAI A, et al. A New Method of Accurate Broken Rotor Bar Diagnosis Based on Modulation Signal Bispectrum Analysis of Motor Current Signals[J]. Mechanical Systems and Signal Processing, 2015, 50: 400-413.
[116]RIERA-GUASP M, ANTONINO-DAVIU J A, CAPOLINO G A. Advances in Electrical Machine, Power Electronic, and Drive Condition Monitoring and Fault Detection: State of the Art[J]. IEEE Transactions on Industrial Electronics, 2014, 62(3): 1746-1759.
[117]阳熹,杨源.智慧型海上风电场一体化监控系统方案设计[J].南方能源建设, 2019, 6(1):42-48.
YANG Xi, YANG Yuan. Design of Smart Offshore Wind Farm Integration Monitoring System[J]. Southern Energy Construction, 2019, 6(1):42-48. |
[1] | XIAO Gang, GU Hairui, DONG Jinjin, WANG Qibing, LU Jiawei. Simulation Data-driven Migration Diagnosis Method for Guide Rail Faults in Long-term Service Elevators [J]. China Mechanical Engineering, 2024, 35(01): 125-135. |
[2] | YU Shubo, LIU Zhansheng, ZHAO Chen. Dynamics Simulation Data Driven Domain Adaptive Intelligent Fault Diagnosis [J]. China Mechanical Engineering, 2023, 34(23): 2832-2841. |
[3] | JI Yongjian, YAO Licheng, . Research on Self-adaptive Chatter Recognition Method for Robotic Milling [J]. China Mechanical Engineering, 2023, 34(18): 2165-2176. |
[4] | SHEN Ziyu, ZHANG Zhai, WANG Youren, LI Hongkun. Analysis of Transmission Characteristics of Sun Wheel Root Cracks in Planetary Wheel Gearboxes#br# [J]. China Mechanical Engineering, 2023, 34(18): 2177-2185. |
[5] | LI Xin, CHENG Junsheng, WU Xiaowei, WANG Jian, YANG Yu, . Early Weak Fault Detection Method of Gear Rotating Machinery by Combining SPCA and OCHD [J]. China Mechanical Engineering, 2023, 34(15): 1805-1812. |
[6] | LIU Yao, CHEN Gaige, LIU Zhenguo, KONG Xianguang, CHANG Jiantao. Health Assessment Method of Shield Machine Cutterheads Driven by Association Rule Mining [J]. China Mechanical Engineering, 2023, 34(11): 1326-1334,1342. |
[7] | ZHANG Long, HU Yanqing, ZHAO Lijuan, ZHANG Hao. Multichannel Information Fusion and Deep Transfer Learning for Rotating Machinery Fault Diagnosis [J]. China Mechanical Engineering, 2023, 34(08): 966-975. |
[8] | DONG Shaojiang, ZHU Peng, ZHU Sunke, LIU Lanhui, XING Bin, HU Xiaolin. Fault Diagnosis Method of Rolling Bearings Based on Simulation Data Drive and Domain Adaptation [J]. China Mechanical Engineering, 2023, 34(06): 694-702. |
[9] | WU Zhenyu, ZHENG Guangming, YAN Pei, YANG Xianhai, ZHAO Guangxi, LI Xuewei. Effects of Surface Treatment on Surface Integrity and Cutting Performance of TiAlSiN Coated Cutting Tools [J]. China Mechanical Engineering, 2023, 34(01): 75-83. |
[10] | QI Yongsheng, SHAN Chengcheng, JIA Shunyu, LIU Liqiang, DONG Chaoyi, . A Gearbox Composite Fault Diagnosis Based on Enhanced CYCBD [J]. China Mechanical Engineering, 2022, 33(24): 2927-2941,2952. |
[11] | YU Liang, ZHENG Guangming, YANG Xianhai, CHENG Xiang, CHANG Kaishuo, LI Xuewei. Effects of Cryogenic Treatment on Cutting Performance of PCBN Tools [J]. China Mechanical Engineering, 2022, 33(20): 2450-2458. |
[12] | NI Zexing, WANG Xiufeng, XU Bo, LI Rui. Applications of Adaptive Bandwidth Kernel Density Estimation in Recognition of Poor Quality Monitoring Data of Rotating Machinery [J]. China Mechanical Engineering, 2022, 33(20): 2476-2482. |
[13] | GUO Wei, XING Xiaosong. Intelligent Fault Diagnosis of Bearings with Few Samples Based on an Improved Convolutional Generative Adversarial Network [J]. China Mechanical Engineering, 2022, 33(19): 2347-2355. |
[14] | WU Lei, WANG Jiaxu, ZHANG Xin, LIU Zhiwen. Blind Deconvolution Based on Reweighted-kurtosis Maximization for Wind Turbine Fault Diagnosis [J]. China Mechanical Engineering, 2022, 33(19): 2356-2363. |
[15] | WANG Qiancheng, SU Chun, WEN Zejun. Multi-condition Monitoring and Fault Diagnosis of Wind Turbines Based on Cointegration Analysis [J]. China Mechanical Engineering, 2022, 33(13): 1596-1603. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||