[1]姜万录,刘思远.多特征信息融合的贝叶斯网络故障诊断方法研究[J].中国机械工程,2010,21(8):940-945. 
Jiang Wanlu,Liu Siyuan.Fault Diagnosis Approach Study of  Bayesian Networks Based on Multi-characteristic Information Fusion[J].China Mechanical Engineering,2010,21(8):940-945. 
[2]Seung H S,Daniel  D  L.The Manifold Ways of Perception[J].Science (S0036-8075),2000,290:2268-2269. 
[3]Roweis S,Saul L.Nonlinear Dimensionality  Reduction by Locally Linear Embedding[J].Science(S0036-8075), 2000, 290: 2323-2326. 
[4]Tenenbaum J,Silva D D,Langford J.A Global Geometric Framework for Nonlinear Dimensionality Reduction[J]. Science(S0036-8075), 2000,290:2319-2323. 
[5]张育林,庄健,王娜,等.局部线性嵌入流形学习算法[J].西安交通大学学报,2010,44(1):78-82. 
Zhang Yulin,Zhuang Jian,Wang Na,et al.Local Linear Embedding Manifold Learning Algorithm[J].Academic Journal of  Xi’an Jiaotong University,2010,44(1):78-82. 
[6]蒋全胜,贾民平,胡建中,等.基于拉普拉斯特征映射的故障模式识别方法[J].系统仿真学报,2008,23(11):60-62. 
Jiang Quansheng,Jia Minping,Hu Jianzhong,et al.Method of Fault Pattern Recognition Based on Laplacian Eigenmaps[J]. Journal of System Simulation,2008,23(11):60-62. 
[7]张银凤,王晅,马建峰,等.等距映射流形学习算法[J].计算机工程与应用,2011,47(14):124-127. 
Zhang Yinfeng,Wang Xuan,Ma Jianfeng,et al.Improved Isometric Mapping Algorithm Manifold Learning[J]. Computer Engineering and Applications,2011,47(14):124-127. 
[8]Kouropteva O,Okun O.Supervised Locally Linear Eembedding Algorithm for Pattern Recognition[J].Pattern Recognition and Image Analysis,2003,2652(9):386-394. 
[9]Cai D,He X F,Han J W,et al.Orthogonal Laplacianfaces for Face Recognition[J].IEEE Trans. Image Process, 2006, 15(11):3608-3614. 
[10]Duchene J,Leclercq S.An Optimal Transformation for Discriminant and Principal Component Analysis[J].IEEE Trans.Pattern Anal. Mach. Intell.,1988,10(6):978-983. 
[11]李锋,汤宝平,董绍江,等.基于正交邻域保持嵌入特征约简的故障诊断模型[J].仪器仪表学报,2011,32(3):622-627. 
Li Feng,Tang Baoping,Dong Shaojiang,et  al.Fault Diagnosis Model Based on Feature Compression with Orthogonal Neighborhood Preserving Embedding[J].Chinese Journal of Scientific Instrument,2011,32(3):622-627. 
[12]Vapnik V N.统计学习理论本质[M].张学工译.北京:清华大学出版社,2000. 
[13]于德介,陈淼峰,程军圣.一种基于支持向量机预测器模型的转子系统故障诊断方法[J].中国机械工程,2006,17(7):696-699. 
Yu Dejie,Chen Miaofeng,Cheng Junsheng.Fault Diagnosis Approach for Rotor Systems Based on Support Vector Machine Predictive Model[J].China Mechanical  Engineering,2006,17(7):696-699. 
[14]吴峰崎,孟光.基于支持向量机的转子振动信号故障分类研究[J].振动工程学报,2006,19(2):238-241. 
Wu Fengqi,Meng Guang.Fault Classification of Rotor Vibration Signal Based on Support Vector Machine[J].Journal of Vibration Engineering,2006,19(2):238-241. 
[15]张子瑜,陈进,史习智.径向高斯核函数时频分布及在故障诊断中的应用[J].振动工程学报,2001,14(1):54-58. 
Zhang Ziyu,Chen Jin,Shi Xizhi.Radial Gaussian Kernel Time-Frequency Distribution and Its Application to Machine Fault Diagnosis[J].Journal of Vibration Engineering,2001,14(1):54-58. |