[1]HUANG J, ZHANG J, XU D, et al. From Jammed Solids to Mechanical Metamaterials:a Brief Review[J]. Current Opinion in Solid State and Materials Science, 2023, 27(1):101053.
[2]YU X, ZHOU J, LIANG H, et al. Mechanical Metamaterials Associated with Stiffness, Rigidity and Compressibility:a Brief Review[J]. Progress in Materials Science, 2018, 94:114-173.
[3]付君健,张跃,杜义贤,等. 周期性多孔结构特征值拓扑优化[J]. 振动与冲击, 2022, 41(3):73-81.
FU Junjian, ZHANG Yue, DU Yixian, et al. Eigenvalue Topology Optimization of Periodic Cellular Structures[J]. Journal of Vibration and Shock, 2022, 41(3):73-81.
[4]汤永锋,路平,刘斌,等. 不同梯度变化方式的不规则多孔结构设计与力学性能分析[J]. 中国机械工程, 2022, 33(23):2859-2866.
TANG Yongfeng, LU Ping, LIU Bin, et al. Design and Mechanics Property Analysis for Different Graded Irregular Porous Structures[J]. China Mechanical Engineering, 2022, 33(23):2859-2866.
[5]LAKES R. Foam Structures with a Negative Poissons Ratio[J]. Science, 1987, 235(4792):1038-1040.
[6]XUE X,LIN C,WU F, et al. Lattice Structures with Negative Poissons Ratio:a Review[J]. Materials Today Communications, 2023, 34:105132.
[7]沈建邦,肖俊华. 负泊松比可变弧角曲边内凹蜂窝结构的力学性能[J]. 中国机械工程, 2019, 30(17):2135-2141.
SHEN Jianbang, XIAO Junhua. Mechanics Properties of Negative Poissons Ratio Honeycomb Structures with Variable Arc Angle Curved Concave Sides[J]. China Mechanical Engineering, 2019, 30(17):2135-2141.
[8]CHEN S,LIU X,HU J, et al. Elastic Architected Mechanical Metamaterials with Negative Stiffness Effect for High Energy Dissipation and Low Frequency Vibration Suppression[J]. Composites Part B:Engineering, 2023, 267:111053.
[9]CHEN B,CHEN L,DU B, et al. Novel Multifunctional Negative Stiffness Mechanical Metamaterial Structure:Tailored Functions of Multi-stable and Compressive Mono-stable[J]. Composites Part B:Engineering, 2021, 204:108501.
[10]TAN X,CHEN S,WANG B, et al. Real-time Tunable Negative Stiffness Mechanical Metamaterial[J]. Extreme Mechanics Letters, 2020, 41:100990.
[11]ZHENG X,LEE H,WEISGRABER T H, et al. Ultralight, Ultrastiff Mechanical Metamaterials[J]. Science, 2014, 344(6190):1373-1377.
[12]BERGER J B, WADLEY H N G, MCMEEKING R M. Mechanical Metamaterials at the Theoretical Limit of Isotropic Elastic Stiffness[J]. Nature, 2017, 543(7646):533-537.
[13]NICOLAOU Z G, MOTTER A E. Mechanical Metamaterials with Negative Compressibility Transitions[J]. Nature Materials, 2012, 11(7):608-613.
[14]YAO Y,NI Y,HE L. Rutile-mimic 3D Metamaterials with Simultaneously Negative Poissons Ratio and Negative Compressibility[J]. Materials & Design, 2021, 200:109440.
[15]范华林,杨卫. 轻质高强点阵材料及其力学性能研究进展[J]. 力学进展, 2007 (1):99-112.
FAN Hualin,YANG Wei. Research Progress of Light and High Strength Lattice Materials and Mechanical Properties[J]. Advances in Mechanics, 2007(1):99-112.
[16]JENETT B, CAMERON C, TOURLOMOUSIS F, et al. Discretely Assembled Mechanical Metamaterials[J]. Science Advances, 2020, 6(47):eabc9943.
[17]华林,魏鹏飞,胡志力. 高强轻质材料绿色智能成形技术与应用[J]. 中国机械工程, 2020, 31(22):2753-2762.
HUA Lin, WEI Pengfei, HU Zhili. Green and Intelligent Forming Technology and Its Applications for High Strength Lightweight Materials[J]. China Mechanical Engineering, 2020, 31(22):2753-2762.
[18]熊晓晨,秦训鹏,华林,等. 复合式增材制造技术研究现状及发展[J]. 中国机械工程, 2022, 33(17):2087-2097.
XIONG Xiaochen, QIN Xunpeng, HUA Lin, et al. Research Status and Development of Hybrid Additive Manufacturing Technology[J]. China Mechanical Engineering, 2022, 33(17):2087-2097.
[19]CARNEY M E. Discrete Cellular Lattice Assembly[D]. Cambridge:Massachusetts Institute of Technology, 2015.
[20]熊健,李志彬,刘惠彬,等. 航空航天轻质复合材料壳体结构研究进展[J]. 复合材料学报, 2021, 38(6):1629-1650.
XIONG Jian, LI Zhibin, LIU Huibin, et al. Advances in Aerospace Lightweight Composite Shell Structure[J]. Acta Materiae Compositae Sinica, 2021, 38(6):1629-1650.
[21]GERSHENFELD N. How to Make Almost Anything:The Digital Fabrication Revolution[J]. Foreign Affairs, 2012, 91:43.
[22]LIU W,SONG H,WANG Z, et al. Improving Mechanical Performance of Fused Deposition Modeling Lattice Structures by a Snap-fitting Method[J]. Materials & Design, 2019, 181:108065.
[23]LIU W,SONG H,HUANG C. Maximizing Mechanical Properties and Minimizing Support Material of PolyJet Fabricated 3D Lattice Structures[J]. Additive Manufacturing, 2020, 35:101257.
[24]DONG L,ZHANG S,YU K. Ti-6Al-4V Truss Lattices with a Composite Topology of Double-simple-cubic and Body-centered-cubic[J]. European Journal of Mechanics—A/Solids, 2022, 92:104486.
[25]DONG L. Mechanical Responses of Snap-fit Ti-6Al-4V Warren-truss Lattice Structures[J]. International Journal of Mechanical Sciences, 2020, 173:105460.
[26]GHOLIKORD M, ETEMADI E, IMANI M, et al. Design and Analysis of Novel Negative Stiffness Structures with Significant Energy Absorption[J]. Thin-Walled Structures, 2022, 181:110137.
[27]GREGG C E, KIM J H, CHEUNG K C. Ultra-light and Scalable Composite Lattice Materials[J]. Advanced Engineering Materials, 2018, 20(9):1800213.
[28]CHAI X, MA Z, WU S, et al. Semi-open Discrete Mechanical Metamaterials and Application in Robotics[J]. Extreme Mechanics Letters, 2023:102031.
[29]WARD J J D. Additive Assembly of Digital Materials[D]. Cambridge:Massachusetts Institute of Technology, 2010.
[30]CRAMER N B,CELLUCCI D W,FORMOSO O B, et al. Elastic Shape Morphing of Ultralight Structures by Programmable Assembly[J]. Smart Materials and Structures, 2019, 28(5):055006.
[31]OU J, MA Z, PETERS J, et al. KinetiX-designing Auxetic-inspired Deformable Material Structures[J]. Computers & Graphics, 2018, 75:72-81.
[32]CRISTIAN D G,NADER E. Digital Metamaterials[J]. Nature Materials, 2014, 13(12):1115-1121.
[33]CUI T J, QI M Q, WAN X, et al. Coding Metamaterials, Digital Metamaterials and Programmable Metamaterials[J]. Light:Science & Applications, 2014, 3(10):e218-e218.
[34]MENG Z, YAN H, LIU M, et al. Encoding and Storage of Information in Mechanical Metamaterials[J]. Advanced Science, 2023, 10(20):2301581.
[35]FANG X, WEN J, CHENG L, et al. Programmable Gear-based Mechanical Metamaterials[J]. Nature Materials, 2022, 21(8):869-876.
[36]MENG Z,LIU M,YAN H, et al. Deployable Mechanical Metamaterials with Multistep Programmable Transformation[J]. Science Advances, 2022, 8(23):eabn5460.
[37]CHOE J K, YI J, JANG H, et al. Digital Mechanical Metamaterial:Encoding Mechanical Information with Graphical Stiffness Pattern for Adaptive Soft Machines[J]. Advanced Materials, 2023, 36(4):2304302.
[38]DONG L,DESHPANDE V,WADLEY H. Mechanical Response of Ti-6Al-4V Octet-truss Lattice Structures[J]. International Journal of Solids and Structures, 2015, 60:107-124.
[39]XU B,YIN S,WANG Y, et al. Long-fiber Reinforced Thermoplastic Composite Lattice Structures:Fabrication and Compressive Properties[J]. Composites Part A:Applied Science and Manufacturing, 2017, 97:41-50.
[40]ARRIETA S, CICERO S, SáNCHEZ M, et al. Estimation of Fracture Loads in 3D Printed PLA Notched Specimens Using the ASED Criterion[J]. Procedia Structural Integrity, 2023, 47:13-21.
[41]MASKERY I,AREMU A,PARRY L, et al. Effective Design and Simulation of Surface-based Lattice Structures Featuring Volume Fraction and Cell Type Grading[J]. Materials & Design, 2018, 155:220-232.
|