[1]ULUTAN D, OZEL T. Machining Induced Surface Integrity in Titanium and Nickel Alloys:a Review[J]. International Journal of Machine Tools and Manufacture, 2010, 51(3):250-280.
[2]卜嘉利, 高志坤, 牛建坤, 等. 航空发动机风扇静子叶片裂纹失效分析[J]. 航空发动机, 2021, 47(6):91-95.
BU Jiali, GAO Zhikun, NIU Jiankun, et al. Crack Failure Analysis of a Fan Stator Vane[J]. Aeroengine, 2021, 47(6):91-95.
[3]黄山, 王克之. 重载渗碳齿轮断裂失效分析[J]. 金属加工(热加工), 2022(9):75-78.
HUANG Shan, WANG Kezhi. Fracture Failure Analysis of Heavy Duty Carburized Gear[J]. MW Metal Forming, 2022(9):75-78.
[4]王增, 兰天, 刘雅洁, 等. 伺服机构导管振动疲劳失效分析[J]. 导弹与航天运载技术, 2021(4):11-14.
WANG Zeng, LAN Tian, LIU Yajie, et al. Fracture Failure Analysis of Tube in Servo Mechanism[J]. Missiles and Space Vehicles, 2021(4):11-14.
[5]DONG Zhilong, XIE Xuefang, JIANG Wenchun, et al. Fatigue Failure Mechanism of Duplex Stainless Steel Welded Joints Including Role of Heterogeneous Cyclic Hardening/Softening:Experimental and Modeling[J]. International Journal of Fatigue, 2024, 178:108010.
[6]KATTOURA M, MANNAVA R S, DONG Qian, et al. Effect of Laser Shock Peening on Elevated Temperature Residual Stress, Microstructure and Fatigue Behavior of ATI 718Plus Alloy[J]. International Journal of Fatigue, 2017, 104:366-378.
[7]LIN Xiaojun, XIN Xiaopeng, YANG Rui, et al. Sensitivity Analysis and Parameter Interval Optimization for Residual Stress in Polishing Process of GH4169 Blisk Blade[J]. Journal of Mechanical Science and Technology, 2021, 35(2):515-524.
[8]王冬冬, 王波. GH4169抗疲劳表面砂带磨削工艺参数优化[J]. 航空制造技术, 2023, 66(21):125-131.
WANG Dongdong, WANG Bo. Optimization of Process Parameters for GH4169 Anti-fatigue Surface Abrasive Belt Grinding[J]. Aeronautical Manufacturing Technology, 2023, 66(21):125-131.
[9]卜嘉利, 吕扬, 刘博志, 等. 不同喷丸强度对TC17钛合金抗疲劳性能影响[J]. 航空动力学报, 2022, 37(6):1225-1233.
BU Jiali, LYU Yang, LIU Bozhi, et al. Effect of Different Shot Peening Intensities on Fatigue Resistance of TC17 Titanium Alloy[J]. Journal of Aerospace Power, 2022, 37(6):1225-1233.
[10]ANGULO I, CORDOVILLA F, GARCIA-BELTRAN A, et al. The Effect of Material Cyclic Deformation Properties on Residual Stress Generation by Laser Shock Processing[J]. International Journal of Mechanical Sciences, 2019, 156:370-381.
[11]杨胜强, 王秀枝, 李文辉. 振动式滚磨光整加工技术的研究现状及再发展[J]. 太原理工大学学报, 2017, 48(3):385-392.
YANG Shengqiang, WANG Xiuzhi, LI Wenhui. Research Status and Further Development of Vibratory Finishing Technology[J]. Journal of Taiyuan University of Technology,2017, 48(3):385-392.
[12]杨胜强, 李文辉, 陈红玲, 等. 表面光整加工理论与新技术[M]. 北京:国防工业出版社, 2011:52.
YANG Shengqiang, LI Wenhui, CHEN Hongling,et al. Surface Finishing Theory and New Technology[M]. Beijing:National Defense Industry Press, 2011:52.
[13]CHAN L W, AHLUWALIA K, GOPINATH A. Parametric Study of Fixtured Vibropeening[J]. Metals, 2019, 9(8):910.
[14]MICALLEF C, WALTON K, ZHUK Y, et al. Surface Finishing and Residual Stress Improvement of Chemical Vapour Deposited Tungsten Carbide Hard Coatings by Vibratory Polishing[J]. Surface Coatings Technology, 2022, 439:128447.
[15]ALCARAZ J Y, ZHANG Jing, PRASANTH A N, et al. Numerical Modeling of Residual Stresses during Vibratory Peening of a 3-stage Blisk—a Multi-scale Discrete Element and Finite Element Approach[J]. Journal of Materials Processing Technology, 2022, 299:117383.
[16]WANG Jiaming, LI Xiuhong, LI Wenhui, et al. Convection and Motion Characteristics of Granular Media in Horizontal Vibratory Finishing[J]. Granular Matter, 2023, 25(4):76.
[17]LI Wenhui, ZHANG Li, LI Xiuhong, et al. Theoretical and Simulation Analysis of Abrasive Particles in Centrifugal Barrel Finishing:Kinematics Mechanism and Distribution Characteristics[J]. Powder Technology, 2017, 318:518-527.
[18]KANG S Y, HASHIMOTO F, JOHNSON P S, et al. Discrete Element Modeling of 3D Media Motion in Vibratory Finishing Process[J]. CIRP Annals - Manufacturing Technology, 2017, 66(1):313-316.
[19]XU Lei, BAO Shiyi, ZHAO Yongzhi. Multi-level DEM Study on Liner Wear in Tumbling Mills for an Engineering Level Approach[J]. Powder Technology, 2020, 364:332-342.
[20]IWASAKI T, YAMANOUCHI H. Ball-impact Energy Analysis of Wet Tumbling Mill Using a Modified Discrete Element Method Considering the Velocity Dependence of Friction Coefficient[J]. Chemical Engineering Research and Design, 2020, 163:241-247.
[21]ZHENG Zumei, ZANG Mengyan, CHEN Shunhua, et al. An Improved 3D DEM-FEM Contact Detection Algorithm for the Interaction Simulations between Particles and Structures[J]. Powder Technology, 2017, 305:308-322.
[22]TU Fubin, DELBERGUE D, MIAO Hongyan, et al. A Sequential DEM-FEM Coupling Method for Shot Peening Simulation[J]. Surface & Coatings Technology, 2017, 319:200-212.
[23]MURUGARATNAM K, UTILI S, PETRINIC N. A Combined DEM-FEM Numerical Method for Shot Peening Parameter Optimisation[J]. Advances in Engineering Software, 2015, 79:13-26.
[24]SUN Yuan, WANG Yong, WANG Linlin, et al. Digging Performance and Stress Characteristic of the Excavator Bucket[J]. Applied Sciences, 2023, 13(20):11507.
[25]胡殿印, 王荣桥, 田腾跃, 等. 一种涡轮榫槽喷丸离散元-有限元耦合多尺度模拟方法:CN202010610897.5[P]. 2022-03-15.
HU Dianyin, WANG Rongqiao, TIAN Tengyue, et al. A Coupled DEM-FEM Multi-scale Simulation Method for Turbine Blade Root Shot Peening:CN202010610897.5[P]. 2022-03-15.
[26]吴远超, 李秀红, 王嘉明, 等. 水平振动抛磨颗粒介质流场特性分析[J]. 表面技术, 2021, 50(11):329-338.
WU Yuanchao, LI Xiuhong, WANG Jiaming, et al. Flow Field Characteristics Analysis of Media for Horizontal Vibratory Mass Finishing[J]. Surface Technology, 2021, 50(11):329-338.
[27]李文辉, 温学杰, 田涛, 等. 一种用于模拟滚磨光整加工工件表面残余应力的方法:CN202310116529.9[P]. 2023-05-26.
LI Wenhui, WEN Xuejie, TIAN Tao, et al. A Method for Simulating Residual Stress on the Surface of a Workpieces Processed by Barrel Finishing:CN202310116529.9[P]. 2023-05-26.
[28]REHMAN A, WU Ping, LI Li, et al. Convection Rolls and Individual Particles Movements in Horizontally Vibrated Granular Particles System[J]. Acta Physica Polonica A, 2016, 130(6):1336-1342.
[29]ZHANG Jing, YAM J A, HOCK S Y, et al. Random Impact FEM Simulation of Irregularly-shaped Media for Parametric Study of Vibratory Surface Enhancement[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2021, 235(9):1483-1497.
[30]BHUVARAGHAN B, SRINIVASAN M S, MAFFEO B, et al. Shot Peening Simulation Using Discrete and Finite Element Methods[J]. Advances in Engineering Software, 2010, 41(12):1266-1276.
[31]XIAO Guijian, SONG Kangkang, ZHOU Huawei, et al. A Multi-particle Abrasive Model for Investigation of Residual Stress in Belt Grinding of Titanium Alloys[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2021, 235(11):1739-1750.
[32]ANSARI M S, ANNABATTULA R K, SUBBIAH S. Gravity-driven Powder Flow and the Influence of External Vibration on Flow Characteristics[J]. Particuology, 2024, 88:201-209.
[33]HAO Yupeng, YANG Shengqiang, LI Xiuhong, et al. Analysis of Contact Force Characteristics of Vibratory Finishing within Pipe-cavity[J]. Granular Matter, 2021, 23:32.
[34]毕中南, 秦海龙, 刘沛, 等. 高温合金锻件残余应力量化表征及控制技术研究进展[J]. 金属学报, 2023, 59(9):1144-1158.
BI Zhongnan, QIN Hailong, LIU Pei, et al. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. Acta Metallurgica Sinica, 2023, 59(9):1144-1158.
[35]韩锐, 李秀红, 王嘉明, 等. 水平强制振动光整加工对TC4钛合金表面完整性参数的影响[J]. 中国机械工程, 2023, 34(17):2037-2047.
HAN Rui, LI Xiuhong, WANG Jiaming, et al. Influences of Horizontal Forced Vibration Finishing on Surface Integrity Parameters of TC4 Titanium Alloys[J]. China Mechanical Engineering, 2023, 34(17):2037-2047.
|