陈明和;王宁
出版日期:
2020-04-25
发布日期:
2020-06-11
基金资助:
CHEN Minghe;WANG Ning
Online:
2020-04-25
Published:
2020-06-11
摘要: 高强铝合金热成形工艺条件下的变形行为表征,需要在考虑温度、应变速率及应变影响的基础上结合微观演化行为建立热塑性本构关系。总结了高强铝合金热塑性变形本构关系相关研究成果。研究结果表明:广泛应用的唯象本构模型通过修正模型参数可以充分耦合应变、温度及应变速率作用,并准确地预测不同变形条件下的流动应力,然而缺乏对变形机制的明确解释,使得唯象本构模型对试验温度、应变速率变化范围较大以及试验条件范围外的变形行为预测精度难以得到保证;基于物理意义的本构模型能够模拟位错密度、晶粒尺寸及动态再结晶等微观演化过程,对流动应力进行精确计算,展现了强大的宏微观变形预测能力,是高强铝合金热塑性变形本构关系的研究趋势。
中图分类号:
陈明和;王宁. 高强铝合金热塑性变形本构关系研究现状及发展趋势[J]. 中国机械工程.
CHEN Minghe;WANG Ning. Current Research and Development Trends in Constitutive Relation for High Strength Aluminum Alloys in Hot Plastic Deformation[J]. China Mechanical Engineering.
[1]范军锋, 陈铭. 中国汽车轻量化之路初探[J]. 铸造, 2006, 55(10):995-998.
FAN Junfeng, CHEN Ming. Ordinary Discussion on the Way toward the Lightweighting of Chinese Automobile[J]. Foundry, 2006, 55(10):995-998. [2]王建国, 王祝堂. 航空航天变形铝合金的进展(1)[J]. 轻合金加工技术, 2013, 41(8):1-10. WANG Jianguo, WANG Zhutang. Advance on Wrought Aluminium Alloys Used for Aeronautic and Astronautic Industry (1)[J]. Light Alloy Fabrication Technology, 2013, 41(8):1-10. [3]ZHENG K, POLITIS D J, WANG L, et al. A Review on Forming Techniques for Manufacturing Lightweight Complex-shaped Aluminium Panel Components[J]. International Journal of Lightweight Materials & Manufacture, 2018, 1(2):55-80. [4]王安东, 陈跃良, 卞贵学,等. 飞机用高强度铝合金腐蚀疲劳研究进展[J]. 航空制造技术, 2017, 60(20):95-103. WANG Andong, CHEN Yueliang, BIAN Guixue, et al. Research Progress on Corrosion Fatigue of High Strength Aluminum Alloy of Aircraft[J]. Aeronautical Manufacturing Technology, 2017,60(20):95-103.
[5]HARRISON N R, LUCKEY S G. Hot Stamping of a B-Pillar Outer from High Strength Aluminum Sheet AA7075[J]. SAE International Journal of Materials & Manufacturing, 2014, 7(3):567-573.
[6]陈国亮, 陈明和, 王宁,等. AA2024-H18铝合金同步冷却热成形后的强化机制[J]. 中国有色金属学报, 2017, 27(7):1337-1343.
CHEN Guoliang, CHEN Minghe, WANG Ning, et al. Strengthening Mechanism of Hot Forming with Synchronous Cooling of AA2024-H18 Aluminum Alloy[J]. Chinese Journal of Nonferrous Metals, 2017, 27(7):1337-1343.
[7]何祝斌, 凡晓波, 苑世剑. 铝合金板材热成形-淬火一体化工艺研究进展[J]. 精密成形工程, 2014(5):37-44.
HE Zhubin, FAN Xiaobo, YUAN Shijian. Review of Hot Forming-Quenching Integrated Process of Aluminum Alloy[J]. Journal of Netshape Forming Engineering, 2014(5):37-44.
[8]LIN Y C, CHEN M S, ZHONG J. Effect of Temperature and Strain Rate on the Compressive Deformation Behavior of 42CrMo Steel[J]. Journal of Materials Processing Tech., 2008, 205(1):308-315.
[9]张文沛, 李欢欢, 胡志力,等. 车用轻量化铝合金材料本构关系研究进展[J]. 材料导报, 2017, 31(13):85-89.
ZHANG Wenpei, LI Huanhuan, HU Zhili, et al. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Review, 2017, 31(13):85-89.
[10]PENG W, ZENG W, WANG Q, et al. Comparative Study on Constitutive Relationship of As-cast Ti60 Titanium Alloy During Hot Deformation Based on Arrhenius-type and Artificial Neural Network Models[J]. Materials & Design, 2013, 51(5):95-104.
[11]LUO J, LI M, LI X, et al. Constitutive Model for High Temperature Deformation of Titanium Alloys Using Internal State Variables[J]. Mechanics of Materials, 2010, 42(2):157-165.
[12]LIU J, ZENG W, LAI Y, et al. Constitutive Model of Ti17 Titanium Alloy with Lamellar-type Initial Microstructure during Hot Deformation Based on Orthogonal Analysis[J]. Materials Science and Engineering:A, 2014, 597:387-394.
[13]NADERI M, DURRENBERGER L, MOLINARI A,et al. Constitutive Relationships for 22MnB5 Boron Steel Deformed Isothermally at High Temperatures[J]. Materials Science and Engineering:A, 2008, 478(1/2):130-139.
[14]KERSTRM P, BERGMAN G, OLDENBURG M. Numerical Implementation of a Constitutive Model for Simulation of Hot Stamping[J]. Modelling & Simulation in Materials Science & Engineering, 2007, 15(2):105-119.
[15]王巧玲, 唐炳涛, 郑伟. 一种修正的 Norton-Hoff 本构模型及实验验证[J]. 中国机械工程, 2015,26(14):1978-1982.
WANG Qiaoling, TANG Bingtao, ZHENG Wei. A Modified Norton-Hoff Constitutive Model and Experimental Verification[J]. China Mechanical Engineering, 2015, 26(14):1978-1982.
[16]曹淑芬, 张立强, 郭鹏程,等. 22MnB5热变形行为研究及本构方程建立[J]. 中国机械工程, 2014, 25(9):1256-1261.
CAO Shufen, ZHANG Liqiang, GUO Pengcheng, et al. Study on Hot Deformation Behavior and Flow Stress Constitutive Model of 22MnB5 at High Temperature[J]. China Mechanical Engineering, 2014, 25(9):1256-1261.
[17]LIN Y C, CHEN X M. A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working[J]. Materials & Design, 2011, 32(4):1733-1759.
[18]JATA K V, SEMIATIN S L.Continuous Dynamic Recrystallization during Friction Stir Welding of High Strength Aluminum Alloys[J]. Scripta Materialia, 2000, 43(8):743-749.
[19]MAIZZA G, PERO R, RICHETTA M, et al. Continuous Dynamic Recrystallization(CDRX) Model for Aluminum Alloys[J]. Journal of Materials Science, 2018(12):1-11.
[20]王少阳. 7075铝合金热变形的动态再结晶规律研究[D]. 合肥:合肥工业大学, 2012.
WANG Shaoyang. Research on Dynamic Recrystallization Behavior of 7075 Aluminum Alloy during Hot Deformation[D]. Hefei:Hefei University of Technology, 2012.
[21]ROKNI M R, ZAREI-HANZAKI A, ROOSTAEI A A, et al. Constitutive Base Analysis of a 7075 Aluminum Alloy during Hot Compression Testing[J]. Materials & Design, 2011, 32(10):4955-4960.
[22]陈国亮. AA2024铝合金同步冷却热成形工艺应用基础研究[D]. 南京:南京航空航天大学,2017.
CHEN Guoliang. Basic Research for Application of Hot Forming Process with Synchronous Cooling of AA2024 Aluminum Alloy[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017.
[23]LIN Y C, CHEN X M.A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working[J]. Materials & Design, 2011, 32(4):1733-1759.
[24]SELLARS C M, MCTEGART W J. On the Mechanism of Hot Deformation[J]. Acta Metallurgica, 1966, 14(9):1136-1138.
[25]JONAS J J, SELLARS C M, TEGARTW J M G. Strength and Structure under Hot-working Conditions[J]. Metallurgical Reviews, 1969, 14(1):1-24.
[26]SHI H, MCLAREN A J, SELLARS C M,et al. Constitutive Equations for High Temperature Flow Stress of Aluminium Alloys[J]. Materials Science and Technology, 1997, 13(3):210-216.
[27]JOHNSON G R, COOK W H. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures[C]∥Proceeding of 7th International Symposium on Ballistics. Hague, 1983:541-548.
[28]FIELDS D S, BACKOFEN W A. Determination of Strain Hardening Characteristics by Torsion Testing[C]∥Proceedings of the Sixtieth Annual Meeting of the Society, American Society for Testing and Materials. Washington DC, 1957:1259-1272.
[29]ZERILLI F J, ARMSTRONG R W.Dislocation-mechanics-based Constitutive Relations for Material Dynamics Calculations[J]. Journal of Applied Physics, 1987, 61(5):1816-1825.
[30]LIN Y C, CHEN M S, ZHONG J. Prediction of 42CrMo Steel Flow Stress at High Temperature and Strain Rate[J]. Mechanics Research Communications, 2008, 35(3):142-150.
[31]GOETZ R L, SEETHARAMAN V.Modeling Dynamic Recrystallization Using Cellular Automata[J]. Scripta Materialia, 1998, 38(3):405-413.
[32]LIN Y C, CHEN X M. A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working[J]. Materials & Design, 2011, 32(4):1733-1759.
[33]HASHIMOTO S. Hot Working of Aluminum Alloy 7075[D]. Boston:Massachusetts Institute of Technology, 1986.
[34]RAJAMUTHAMILSELVAN M, RAMANATHAN S. Hot Deformation Behaviour of 7075 Alloy[J]. Journal of Alloys & Compounds, 2011, 509(3):948-952.
[35]ROKNI M R, ZAREI-HANZAKI A, ROOSTAEI A A, et al. Constitutive Base Analysis of a 7075 Aluminum Alloy during Hot Compression Testing[J]. Materials & Design, 2011, 32(10):4955-4960.
[36]WANG L, YU H, LEE Y,et al. Hot Tensile Deformation Behavior of Twin Roll Casted 7075 Aluminum Alloy[J]. Metals & Materials International, 2015, 21(5):832-841.
[37]JOHNSON G R, COOK W H. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures[C]∥Proceedings of the 7th International Symposium on Ballistics. Hague, 1983:541-548.
[38]BRAR N, JOSHI V, HARRIS B.Constitutive Model Constants for Al7075T651 and Al7075T6[C]∥AIP Conference Proceedings. Ann Arbo, 2009:945-948.
[39]LIN Y C, LI L T, FU Y X, et al. Hot Compressive Deformation Behavior of 7075 Al Alloy under Elevated Temperature[J]. Journal of Materials Science, 2012, 47(3):1306-1318.
[40]PATURI U M R, NARALA S K R, PUNDIR R S. Constitutive Flow Stress Formulation, Model Validation and FE Cutting Simulation for AA7075-T6 Aluminum Alloy[J]. Materials Science and Engineering: A, 2014, 605:176-185.
[41]TRIMBLE D, ODONNELL G E.Constitutive Modelling for Elevated Temperature Flow Behaviour of AA7075[J]. Materials & Design, 2015, 76:150-168.
[42]SAMANTARAY D, MANDAL S, BORAH U, et al. A Thermo-viscoplastic Constitutive Model to Predict Elevated Temperature Flow Behaviour in a Titanium Modified Austenitic Stainless Steel[J]. Materials Science and Engineering: A, 2009, 526(1/2):1-6.
[43]ZHAN H, WANG G, KENT D, et al. Constitutive Modelling of the Flow Behaviour of a β Titanium Alloy at High Strain Rates and Elevated Temperatures Using the Johnson-Cook and Modified Zerilli-Armstrong Models[J]. Materials Science and Engineering: A, 2014, 612:71-79.
[44]LIN Y C, CHEN X M.A Combined Johnson-Cook and Zerilli-Armstrong Model for Hot Compressed Typical High-strength Alloy Steel[J]. Computational Materials Science, 2010, 49(3):628-633.
[45]LEE W S , SUE W C , LIN C F , et al. The Strain Rate and Temperature Dependence of the Dynamic Impact Properties of 7075 Aluminum Alloy[J]. Journal of Materials Processing Technology, 2000, 100(1/3):116-122.
[46]KOBAYASHI H , DODD B. A Numerical Analysis for the formation of Adiabatic Shear Bands including Void Nucleation and Growth[J]. International Journal of Impact Engineering, 1989, 8(1):1-13.
[47]QUAN G Z, LIU K W, ZHOU J, et al. Dynamic Softening Behaviors of 7075 Aluminum Alloy[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(S3):537-541.
[48]LIN Y C, CHEN X M, LIU G. A Modified Johnson-Cook Model for Tensile Behaviors of Typical High-strength Alloy Steel[J]. Materials Science and Engineering:A, 2010, 527(26):6980-6986.
[49]ZENER C, HOLLOMON J H.Effect of Strain Rate upon Plastic Flow of Steel[J]. Journal of Applied Physics, 1944, 15(1):22-32.
[50]CHENG Y Q, ZHANG H, CHEN Z H,et al. Flow Stress Equation of AZ31 Magnesium Alloy Sheet during Warm Tensile Deformation[J]. Journal of Materials Processing Technology, 2008, 208(1/3):29-34.
[51]WANG Y, JIANG Z. Dynamic Compressive Behavior of Selected Aluminum Alloy at Low Temperature[J]. Materials Science and Engineering: A, 2012, 553(9):176-180.
[52]PAUL S K. Predicting the Flow Behavior of Metals under Different Strain Rate and Temperature through Phenomenological Modeling[J]. Computational Materials Science, 2012, 65:91-99.
[53]易幼平, 杨积慧, 蔺永诚. 7050铝合金热压缩变形的流变应力本构方程[J]. 材料工程, 2007(4):20-22.
YI Youping, YANG Jihui, LIN Yongcheng. Flow Stress Constitutive Equation of 7050 Aluminum Alloy during Hot Compression[J]. Journal of Materials Engineering, 2007(4):20-22.
[54]仇琍丽, 高文理, 陆政,等. 7A85铝合金的热压缩流变行为与显微组织[J]. 材料工程, 2016, 44(1):33-39.
QIU Lili, GAO Wenli, LU Zheng, et al. Flow Behavior and Microstructure of 7A85 Aluminum Alloy during Hot Compression[J]. Journal of Materials Engineering, 2016, 44(1):33-39.
[55]CHEN L, ZHAO G, YU J, et al. Constitutive Analysis of Homogenized 7005 Aluminum Alloy at Evaluated Temperature for Extrusion Process[J]. Materials & Design, 2015, 66:129-136.
[56]TAO Z, WU Y X, GONG H, et al. Flow Stress Behavior and Constitutive Model of 7055 Aluminum Alloy during Hot Plastic Deformation[J]. Mechanics of Solid Bodies, 2016, 22(5):359-365.
[57]陈亚京, 杨勇彪, 张治民,等. 7A04铝合金扭转热变形行为研究[J]. 塑性工程学报, 2018,25(1):167-174.
CHEN Yajing, YANG Yongbiao, ZHANG Zhimin, et al. Hot Torsional Deformation Behavior of 7A04 Aluminum Alloy[J]. Journal of Plasticity Engineering, 2018,25(1):167-174.
[58]SANG D, LI Y. The Hot Deformation Activation Energy of 7050 Aluminum Alloy under Three Different Deformation Modes[J]. Metals, 2016, 6(3):49.
[59]秦清风, 谭迎新, 杨勇彪,等. 晶粒尺寸对7A04铝合金热变形行为的影响研究[J]. 热加工工艺, 2016(11):59-63.
QIN Qingfeng, TAN Yingxin, YANG Yongbiao, et al. Influence of Grain Sizes on Hot Deformation Behavior of 7A04 Aluminum Alloy[J]. Hot Working Technology, 2016(11):59-63.
[60]QUAN G, ZOU Z, WANG T, et al. Modeling the Hot Deformation Behaviors of As-extruded 7075 Aluminum Alloy by an Artificial Neural Network with Back-propagation Algorithm[J]. High Temperature Materials and Processes, 2017, 36(1):1-13.
[61]王煜, 孙志超, 李志颖,等. 挤压态7075铝合金高温流变行为及神经网络本构模型[J]. 中国有色金属学报, 2011, 21(11):2880-2887.
WANG Yu, SUN Zhichao, LI Zhiying, et al. High Temperature Flow Stress Behavior of As-extruded 7075 Aluminum Alloy and Neural Network Constitutive Model[J]. Chinese Journal of Nonferrous Metals, 2011, 21(11):2880-2887.
[62]吴雄喜. 基于BP神经网络的7050铝合金本构关系模型及加工图[J]. 特种铸造及有色合金, 2014, 34(10):1011-1015.
WU Xiongxi. Model of Constitutive Relationship and Processing Map for 7050 Aluminum Alloy based on BP Neural Network[J]. Special Casting & Nonferrous Alloys, 2014, 34(10):1011-1015.
[63]王安东, 陈跃良, 卞贵学,等. 飞机用高强度铝合金腐蚀疲劳研究进展[J]. 航空制造技术, 2017, 60(20):95-103.
WANG Andong, CHEN Yueliang, BIAN Guixue, et al. Research Progress on Corrosion Fatigue of High Strength Aluminum Alloy of Aircraft[J]. Aeronautical Manufacturing Technology, 2017, 60(20):95-103.
[64]KATSUO I.Research on the intensity of Steel Processing (ii):the Resistance of High Temperature Deformation of Various Steel[J]. Iron and Steel:Journal of Japan Iron and Steel Association, 1955, 41(6):593-601.
[65]龚乾江, 杨明, 梁益龙,等. 211Z-X新型高强韧铝合金热成形及动态再结晶行为研究[J]. 稀有金属, 2018(1):36-44.
GONG Qianjiang, YANG Ming, LIANG Yilong, et al. Hot Formability and Dynamic Recrystallization Behavior of New High Performance Aluminum Alloy 211Z-X[J]. Chinese Journal of Rare Metals, 2018(1):36-44.
[66]MIRZADEH H. Simple Physically-based Constitutive Equations for Hot Deformation of 2024 and 7075 Aluminum Alloys[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(5):1614-1618.
[67]CHEN L, ZHAO G, GONG J, et al. Hot Deformation Behaviors and Processing Maps of 2024 Aluminum Alloy in As-cast and Homogenized States[J]. Journal of Materials Engineering & Performance, 2015, 24(12):5002-5012.
[68]LIN Y C, XIA Y C, CHEN X M, et al. Constitutive Descriptions for Hot Compressed 2124-T851 Aluminum Alloy over a Wide Range of Temperature and Strain Rate[J]. Computational Materials Science, 2010, 50(1):227-233.
[69]周细林. 基于神经网络的2D70铝合金本构关系模型的建立[J]. 江西蓝天学院学报, 2011, 6(3):33-36.
ZHOU Xilin. Building the Constitutive Relationship Model of 2D70 Aluminum Alloy Based on Neural Network[J]. Journal of Jiangxi Blue Sky University, 2011, 6(3):33-36.
[70]刘芳, 单德彬, 吕炎,等. 2A70铝合金本构关系的新模型[J]. 哈尔滨工业大学学报, 2005, 37(4):449-450.
LIU Fang, SHAN Debin, LYU Yan, et al. A New Model of the Constitutive Relationship of 2A70 Aluminum Alloy[J]. Journal of Harbin Institute of Technology, 2005, 37(4):449-450.
[71]HORSTEMEYER M F, BAMMANN D J. Historical Review of Internal State Variable Theory for Inelasticity[J]. International Journal of Plasticity, 2010, 26(9):1310-1334.
[72]AUSTIN R A, MCDOWELLD L. A Dislocation-based Constitutive Model for Viscoplastic Deformation of FCC Metals at Very High Strain Rates[J]. International Journal of Plasticity, 2011, 27(1):1-24.
[73]董湘怀. 晶体塑性模型在板材成形计算机模拟中的应用[J]. 中国机械工程, 1997,8(4):27-30.
DONG Xianghuai. Computer Simulation of Sheet Metal Forming Processes Using Crystalline Plasticity[J]. China Mechanical Engineering, 1997,8(4):27-30.
[74]李大永, 张少睿, 彭颖红,等. 板材冲压成形的晶体塑性有限元模拟[J]. 机械工程学报, 2008, 44(1):190-194.
LI Dayong, ZHANG Shaorui, PENG Yinghong, et al. Finite Element Simulation of Sheet Metal Stamping with Polycrystalline Plasticity[J]. Journal of Mechanical Engineering, 2008, 44(1):190-194.
[75]皮华春, 韩静涛, 薛永栋,等. 金属塑性成形的晶体塑性学有限元模拟研究进展[J]. 机械工程学报, 2006, 42(3):15-21.
PI Huachun, HANG Jingtao, XUE Yongdong, et al. Development on Crystal Plasticity Finite Element Modeling in Metal Forming[J]. Journal of Mechanical Engineering, 2006, 42(3):15-21.
[76]MOHAMED M S, FOSTER A D, LIN J, et al. Investigation of Deformation and Failure Features in Hot Stamping of AA6082:Experimentation and Modelling[J]. International Journal of Machine Tools and Manufacture, 2012, 53(1):27-38.
[77]LIN J, CHEONG B H, YAO X. Universal Multi-objective Function for Optimising Superplastic-damage Constitutive Equations[J]. Journal of Materials Processing Technology, 2002, 125(2):199-205.
[78]LIN J, MOHAMED M, BALINT D,et al. The Development of Continuum Damage Mechanics-based Theories for Predicting Forming Limit Diagrams for Hot Stamping Applications[J]. International Journal of Damage Mechanics, 2014, 23(5):684-701.
[79]庄蔚敏, 曹德闯, 叶辉. 基于连续介质损伤力学预测 7075铝合金热冲压成形极限图[J]. 吉林大学学报(工学版), 2014(2):409-414.
ZHUANG Weimin, CAO Dechuang, YE Hui. Prediction of FLD for AA7075 under Hot Stamping Based on Continuum Damage Mechanics[J]. Journal of Jilin University (Engineering and Technology Edition), 2014(2):409-414.
[80]黄诗尧. AZ31镁合金挤压成形微观组织演化的试验研究与数值模拟[D]. 上海:上海交通大学, 2010.
HUANG Shiyao. Numerical and Experimental Research on the Microstructure Evolution of Magnesium Alloy AZ31 during Extrusion Process[D]. Shanghai:Shanghai Jiao Tong University, 2010.
[81]周国伟. AZ31B 镁合金板材温热塑性变形机制与成形极限的实验与理论研究[D]. 上海:上海交通大学, 2016.
ZHOU Guowei. Experimental and Crystal Plasticity Analysis on the Deformation Mechanisms and Forming Limit of AZ31B Mg Alloy Sheet at Warm Conditions[D]. Shanghai:Shanghai Jiao Tong University, 2016.
[82]WANG H, WU P D, TOMé C N, et al. A Constitutive Model of Twinning and Detwinning for Hexagonal Close Packed Polycrystals[J]. Materials Science and Engineering: A, 2012, 555(5):93-98.
[83]蓝永庭, 陆大敏, 刘贵龙,等. AZ31镁合金晶体塑性行为与细观非均匀变形的数值模拟[J]. 中国有色金属学报, 2014(12):2985-2994.
LAN Yongting, LU Damin, LIU Guilong, et al. Numerical Simulation of Plastic Behavior and Meso Inhomogeneous Deformation in AZ31 Mg Alloy[J]. Chinese Journal of Nonferrous Metals, 2014, 24(12):2985-2994.
[1]范军锋, 陈铭. 中国汽车轻量化之路初探[J]. 铸造, 2006, 55(10):995-998.
FAN Junfeng, CHEN Ming. Ordinary Discussion on the Way toward the Lightweighting of Chinese Automobile[J]. Foundry, 2006, 55(10):995-998. [2]王建国, 王祝堂. 航空航天变形铝合金的进展(1)[J]. 轻合金加工技术, 2013, 41(8):1-10. WANG Jianguo, WANG Zhutang. Advance on Wrought Aluminium Alloys Used for Aeronautic and Astronautic Industry (1)[J]. Light Alloy Fabrication Technology, 2013, 41(8):1-10. [3]ZHENG K, POLITIS D J, WANG L, et al. A Review on Forming Techniques for Manufacturing Lightweight Complex-shaped Aluminium Panel Components[J]. International Journal of Lightweight Materials & Manufacture, 2018, 1(2):55-80. [4]王安东, 陈跃良, 卞贵学,等. 飞机用高强度铝合金腐蚀疲劳研究进展[J]. 航空制造技术, 2017, 60(20):95-103. WANG Andong, CHEN Yueliang, BIAN Guixue, et al. Research Progress on Corrosion Fatigue of High Strength Aluminum Alloy of Aircraft[J]. Aeronautical Manufacturing Technology, 2017,60(20):95-103.
[5]HARRISON N R, LUCKEY S G. Hot Stamping of a B-Pillar Outer from High Strength Aluminum Sheet AA7075[J]. SAE International Journal of Materials & Manufacturing, 2014, 7(3):567-573.
[6]陈国亮, 陈明和, 王宁,等. AA2024-H18铝合金同步冷却热成形后的强化机制[J]. 中国有色金属学报, 2017, 27(7):1337-1343.
CHEN Guoliang, CHEN Minghe, WANG Ning, et al. Strengthening Mechanism of Hot Forming with Synchronous Cooling of AA2024-H18 Aluminum Alloy[J]. Chinese Journal of Nonferrous Metals, 2017, 27(7):1337-1343.
[7]何祝斌, 凡晓波, 苑世剑. 铝合金板材热成形-淬火一体化工艺研究进展[J]. 精密成形工程, 2014(5):37-44.
HE Zhubin, FAN Xiaobo, YUAN Shijian. Review of Hot Forming-Quenching Integrated Process of Aluminum Alloy[J]. Journal of Netshape Forming Engineering, 2014(5):37-44.
[8]LIN Y C, CHEN M S, ZHONG J. Effect of Temperature and Strain Rate on the Compressive Deformation Behavior of 42CrMo Steel[J]. Journal of Materials Processing Tech., 2008, 205(1):308-315.
[9]张文沛, 李欢欢, 胡志力,等. 车用轻量化铝合金材料本构关系研究进展[J]. 材料导报, 2017, 31(13):85-89.
ZHANG Wenpei, LI Huanhuan, HU Zhili, et al. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Review, 2017, 31(13):85-89.
[10]PENG W, ZENG W, WANG Q, et al. Comparative Study on Constitutive Relationship of As-cast Ti60 Titanium Alloy During Hot Deformation Based on Arrhenius-type and Artificial Neural Network Models[J]. Materials & Design, 2013, 51(5):95-104.
[11]LUO J, LI M, LI X, et al. Constitutive Model for High Temperature Deformation of Titanium Alloys Using Internal State Variables[J]. Mechanics of Materials, 2010, 42(2):157-165.
[12]LIU J, ZENG W, LAI Y, et al. Constitutive Model of Ti17 Titanium Alloy with Lamellar-type Initial Microstructure during Hot Deformation Based on Orthogonal Analysis[J]. Materials Science and Engineering:A, 2014, 597:387-394.
[13]NADERI M, DURRENBERGER L, MOLINARI A,et al. Constitutive Relationships for 22MnB5 Boron Steel Deformed Isothermally at High Temperatures[J]. Materials Science and Engineering:A, 2008, 478(1/2):130-139.
[14]KERSTRM P, BERGMAN G, OLDENBURG M. Numerical Implementation of a Constitutive Model for Simulation of Hot Stamping[J]. Modelling & Simulation in Materials Science & Engineering, 2007, 15(2):105-119.
[15]王巧玲, 唐炳涛, 郑伟. 一种修正的 Norton-Hoff 本构模型及实验验证[J]. 中国机械工程, 2015,26(14):1978-1982.
WANG Qiaoling, TANG Bingtao, ZHENG Wei. A Modified Norton-Hoff Constitutive Model and Experimental Verification[J]. China Mechanical Engineering, 2015, 26(14):1978-1982.
[16]曹淑芬, 张立强, 郭鹏程,等. 22MnB5热变形行为研究及本构方程建立[J]. 中国机械工程, 2014, 25(9):1256-1261.
CAO Shufen, ZHANG Liqiang, GUO Pengcheng, et al. Study on Hot Deformation Behavior and Flow Stress Constitutive Model of 22MnB5 at High Temperature[J]. China Mechanical Engineering, 2014, 25(9):1256-1261.
[17]LIN Y C, CHEN X M. A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working[J]. Materials & Design, 2011, 32(4):1733-1759.
[18]JATA K V, SEMIATIN S L.Continuous Dynamic Recrystallization during Friction Stir Welding of High Strength Aluminum Alloys[J]. Scripta Materialia, 2000, 43(8):743-749.
[19]MAIZZA G, PERO R, RICHETTA M, et al. Continuous Dynamic Recrystallization(CDRX) Model for Aluminum Alloys[J]. Journal of Materials Science, 2018(12):1-11.
[20]王少阳. 7075铝合金热变形的动态再结晶规律研究[D]. 合肥:合肥工业大学, 2012.
WANG Shaoyang. Research on Dynamic Recrystallization Behavior of 7075 Aluminum Alloy during Hot Deformation[D]. Hefei:Hefei University of Technology, 2012.
[21]ROKNI M R, ZAREI-HANZAKI A, ROOSTAEI A A, et al. Constitutive Base Analysis of a 7075 Aluminum Alloy during Hot Compression Testing[J]. Materials & Design, 2011, 32(10):4955-4960.
[22]陈国亮. AA2024铝合金同步冷却热成形工艺应用基础研究[D]. 南京:南京航空航天大学,2017.
CHEN Guoliang. Basic Research for Application of Hot Forming Process with Synchronous Cooling of AA2024 Aluminum Alloy[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017.
[23]LIN Y C, CHEN X M.A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working[J]. Materials & Design, 2011, 32(4):1733-1759.
[24]SELLARS C M, MCTEGART W J. On the Mechanism of Hot Deformation[J]. Acta Metallurgica, 1966, 14(9):1136-1138.
[25]JONAS J J, SELLARS C M, TEGARTW J M G. Strength and Structure under Hot-working Conditions[J]. Metallurgical Reviews, 1969, 14(1):1-24.
[26]SHI H, MCLAREN A J, SELLARS C M,et al. Constitutive Equations for High Temperature Flow Stress of Aluminium Alloys[J]. Materials Science and Technology, 1997, 13(3):210-216.
[27]JOHNSON G R, COOK W H. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures[C]∥Proceeding of 7th International Symposium on Ballistics. Hague, 1983:541-548.
[28]FIELDS D S, BACKOFEN W A. Determination of Strain Hardening Characteristics by Torsion Testing[C]∥Proceedings of the Sixtieth Annual Meeting of the Society, American Society for Testing and Materials. Washington DC, 1957:1259-1272.
[29]ZERILLI F J, ARMSTRONG R W.Dislocation-mechanics-based Constitutive Relations for Material Dynamics Calculations[J]. Journal of Applied Physics, 1987, 61(5):1816-1825.
[30]LIN Y C, CHEN M S, ZHONG J. Prediction of 42CrMo Steel Flow Stress at High Temperature and Strain Rate[J]. Mechanics Research Communications, 2008, 35(3):142-150.
[31]GOETZ R L, SEETHARAMAN V.Modeling Dynamic Recrystallization Using Cellular Automata[J]. Scripta Materialia, 1998, 38(3):405-413.
[32]LIN Y C, CHEN X M. A Critical Review of Experimental Results and Constitutive Descriptions for Metals and Alloys in Hot Working[J]. Materials & Design, 2011, 32(4):1733-1759.
[33]HASHIMOTO S. Hot Working of Aluminum Alloy 7075[D]. Boston:Massachusetts Institute of Technology, 1986.
[34]RAJAMUTHAMILSELVAN M, RAMANATHAN S. Hot Deformation Behaviour of 7075 Alloy[J]. Journal of Alloys & Compounds, 2011, 509(3):948-952.
[35]ROKNI M R, ZAREI-HANZAKI A, ROOSTAEI A A, et al. Constitutive Base Analysis of a 7075 Aluminum Alloy during Hot Compression Testing[J]. Materials & Design, 2011, 32(10):4955-4960.
[36]WANG L, YU H, LEE Y,et al. Hot Tensile Deformation Behavior of Twin Roll Casted 7075 Aluminum Alloy[J]. Metals & Materials International, 2015, 21(5):832-841.
[37]JOHNSON G R, COOK W H. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures[C]∥Proceedings of the 7th International Symposium on Ballistics. Hague, 1983:541-548.
[38]BRAR N, JOSHI V, HARRIS B.Constitutive Model Constants for Al7075T651 and Al7075T6[C]∥AIP Conference Proceedings. Ann Arbo, 2009:945-948.
[39]LIN Y C, LI L T, FU Y X, et al. Hot Compressive Deformation Behavior of 7075 Al Alloy under Elevated Temperature[J]. Journal of Materials Science, 2012, 47(3):1306-1318.
[40]PATURI U M R, NARALA S K R, PUNDIR R S. Constitutive Flow Stress Formulation, Model Validation and FE Cutting Simulation for AA7075-T6 Aluminum Alloy[J]. Materials Science and Engineering: A, 2014, 605:176-185.
[41]TRIMBLE D, ODONNELL G E.Constitutive Modelling for Elevated Temperature Flow Behaviour of AA7075[J]. Materials & Design, 2015, 76:150-168.
[42]SAMANTARAY D, MANDAL S, BORAH U, et al. A Thermo-viscoplastic Constitutive Model to Predict Elevated Temperature Flow Behaviour in a Titanium Modified Austenitic Stainless Steel[J]. Materials Science and Engineering: A, 2009, 526(1/2):1-6.
[43]ZHAN H, WANG G, KENT D, et al. Constitutive Modelling of the Flow Behaviour of a β Titanium Alloy at High Strain Rates and Elevated Temperatures Using the Johnson-Cook and Modified Zerilli-Armstrong Models[J]. Materials Science and Engineering: A, 2014, 612:71-79.
[44]LIN Y C, CHEN X M.A Combined Johnson-Cook and Zerilli-Armstrong Model for Hot Compressed Typical High-strength Alloy Steel[J]. Computational Materials Science, 2010, 49(3):628-633.
[45]LEE W S , SUE W C , LIN C F , et al. The Strain Rate and Temperature Dependence of the Dynamic Impact Properties of 7075 Aluminum Alloy[J]. Journal of Materials Processing Technology, 2000, 100(1/3):116-122.
[46]KOBAYASHI H , DODD B. A Numerical Analysis for the formation of Adiabatic Shear Bands including Void Nucleation and Growth[J]. International Journal of Impact Engineering, 1989, 8(1):1-13.
[47]QUAN G Z, LIU K W, ZHOU J, et al. Dynamic Softening Behaviors of 7075 Aluminum Alloy[J]. Transactions of Nonferrous Metals Society of China, 2009, 19(S3):537-541.
[48]LIN Y C, CHEN X M, LIU G. A Modified Johnson-Cook Model for Tensile Behaviors of Typical High-strength Alloy Steel[J]. Materials Science and Engineering:A, 2010, 527(26):6980-6986.
[49]ZENER C, HOLLOMON J H.Effect of Strain Rate upon Plastic Flow of Steel[J]. Journal of Applied Physics, 1944, 15(1):22-32.
[50]CHENG Y Q, ZHANG H, CHEN Z H,et al. Flow Stress Equation of AZ31 Magnesium Alloy Sheet during Warm Tensile Deformation[J]. Journal of Materials Processing Technology, 2008, 208(1/3):29-34.
[51]WANG Y, JIANG Z. Dynamic Compressive Behavior of Selected Aluminum Alloy at Low Temperature[J]. Materials Science and Engineering: A, 2012, 553(9):176-180.
[52]PAUL S K. Predicting the Flow Behavior of Metals under Different Strain Rate and Temperature through Phenomenological Modeling[J]. Computational Materials Science, 2012, 65:91-99.
[53]易幼平, 杨积慧, 蔺永诚. 7050铝合金热压缩变形的流变应力本构方程[J]. 材料工程, 2007(4):20-22.
YI Youping, YANG Jihui, LIN Yongcheng. Flow Stress Constitutive Equation of 7050 Aluminum Alloy during Hot Compression[J]. Journal of Materials Engineering, 2007(4):20-22.
[54]仇琍丽, 高文理, 陆政,等. 7A85铝合金的热压缩流变行为与显微组织[J]. 材料工程, 2016, 44(1):33-39.
QIU Lili, GAO Wenli, LU Zheng, et al. Flow Behavior and Microstructure of 7A85 Aluminum Alloy during Hot Compression[J]. Journal of Materials Engineering, 2016, 44(1):33-39.
[55]CHEN L, ZHAO G, YU J, et al. Constitutive Analysis of Homogenized 7005 Aluminum Alloy at Evaluated Temperature for Extrusion Process[J]. Materials & Design, 2015, 66:129-136.
[56]TAO Z, WU Y X, GONG H, et al. Flow Stress Behavior and Constitutive Model of 7055 Aluminum Alloy during Hot Plastic Deformation[J]. Mechanics of Solid Bodies, 2016, 22(5):359-365.
[57]陈亚京, 杨勇彪, 张治民,等. 7A04铝合金扭转热变形行为研究[J]. 塑性工程学报, 2018,25(1):167-174.
CHEN Yajing, YANG Yongbiao, ZHANG Zhimin, et al. Hot Torsional Deformation Behavior of 7A04 Aluminum Alloy[J]. Journal of Plasticity Engineering, 2018,25(1):167-174.
[58]SANG D, LI Y. The Hot Deformation Activation Energy of 7050 Aluminum Alloy under Three Different Deformation Modes[J]. Metals, 2016, 6(3):49.
[59]秦清风, 谭迎新, 杨勇彪,等. 晶粒尺寸对7A04铝合金热变形行为的影响研究[J]. 热加工工艺, 2016(11):59-63.
QIN Qingfeng, TAN Yingxin, YANG Yongbiao, et al. Influence of Grain Sizes on Hot Deformation Behavior of 7A04 Aluminum Alloy[J]. Hot Working Technology, 2016(11):59-63.
[60]QUAN G, ZOU Z, WANG T, et al. Modeling the Hot Deformation Behaviors of As-extruded 7075 Aluminum Alloy by an Artificial Neural Network with Back-propagation Algorithm[J]. High Temperature Materials and Processes, 2017, 36(1):1-13.
[61]王煜, 孙志超, 李志颖,等. 挤压态7075铝合金高温流变行为及神经网络本构模型[J]. 中国有色金属学报, 2011, 21(11):2880-2887.
WANG Yu, SUN Zhichao, LI Zhiying, et al. High Temperature Flow Stress Behavior of As-extruded 7075 Aluminum Alloy and Neural Network Constitutive Model[J]. Chinese Journal of Nonferrous Metals, 2011, 21(11):2880-2887.
[62]吴雄喜. 基于BP神经网络的7050铝合金本构关系模型及加工图[J]. 特种铸造及有色合金, 2014, 34(10):1011-1015.
WU Xiongxi. Model of Constitutive Relationship and Processing Map for 7050 Aluminum Alloy based on BP Neural Network[J]. Special Casting & Nonferrous Alloys, 2014, 34(10):1011-1015.
[63]王安东, 陈跃良, 卞贵学,等. 飞机用高强度铝合金腐蚀疲劳研究进展[J]. 航空制造技术, 2017, 60(20):95-103.
WANG Andong, CHEN Yueliang, BIAN Guixue, et al. Research Progress on Corrosion Fatigue of High Strength Aluminum Alloy of Aircraft[J]. Aeronautical Manufacturing Technology, 2017, 60(20):95-103.
[64]KATSUO I.Research on the intensity of Steel Processing (ii):the Resistance of High Temperature Deformation of Various Steel[J]. Iron and Steel:Journal of Japan Iron and Steel Association, 1955, 41(6):593-601.
[65]龚乾江, 杨明, 梁益龙,等. 211Z-X新型高强韧铝合金热成形及动态再结晶行为研究[J]. 稀有金属, 2018(1):36-44.
GONG Qianjiang, YANG Ming, LIANG Yilong, et al. Hot Formability and Dynamic Recrystallization Behavior of New High Performance Aluminum Alloy 211Z-X[J]. Chinese Journal of Rare Metals, 2018(1):36-44.
[66]MIRZADEH H. Simple Physically-based Constitutive Equations for Hot Deformation of 2024 and 7075 Aluminum Alloys[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(5):1614-1618.
[67]CHEN L, ZHAO G, GONG J, et al. Hot Deformation Behaviors and Processing Maps of 2024 Aluminum Alloy in As-cast and Homogenized States[J]. Journal of Materials Engineering & Performance, 2015, 24(12):5002-5012.
[68]LIN Y C, XIA Y C, CHEN X M, et al. Constitutive Descriptions for Hot Compressed 2124-T851 Aluminum Alloy over a Wide Range of Temperature and Strain Rate[J]. Computational Materials Science, 2010, 50(1):227-233.
[69]周细林. 基于神经网络的2D70铝合金本构关系模型的建立[J]. 江西蓝天学院学报, 2011, 6(3):33-36.
ZHOU Xilin. Building the Constitutive Relationship Model of 2D70 Aluminum Alloy Based on Neural Network[J]. Journal of Jiangxi Blue Sky University, 2011, 6(3):33-36.
[70]刘芳, 单德彬, 吕炎,等. 2A70铝合金本构关系的新模型[J]. 哈尔滨工业大学学报, 2005, 37(4):449-450.
LIU Fang, SHAN Debin, LYU Yan, et al. A New Model of the Constitutive Relationship of 2A70 Aluminum Alloy[J]. Journal of Harbin Institute of Technology, 2005, 37(4):449-450.
[71]HORSTEMEYER M F, BAMMANN D J. Historical Review of Internal State Variable Theory for Inelasticity[J]. International Journal of Plasticity, 2010, 26(9):1310-1334.
[72]AUSTIN R A, MCDOWELLD L. A Dislocation-based Constitutive Model for Viscoplastic Deformation of FCC Metals at Very High Strain Rates[J]. International Journal of Plasticity, 2011, 27(1):1-24.
[73]董湘怀. 晶体塑性模型在板材成形计算机模拟中的应用[J]. 中国机械工程, 1997,8(4):27-30.
DONG Xianghuai. Computer Simulation of Sheet Metal Forming Processes Using Crystalline Plasticity[J]. China Mechanical Engineering, 1997,8(4):27-30.
[74]李大永, 张少睿, 彭颖红,等. 板材冲压成形的晶体塑性有限元模拟[J]. 机械工程学报, 2008, 44(1):190-194.
LI Dayong, ZHANG Shaorui, PENG Yinghong, et al. Finite Element Simulation of Sheet Metal Stamping with Polycrystalline Plasticity[J]. Journal of Mechanical Engineering, 2008, 44(1):190-194.
[75]皮华春, 韩静涛, 薛永栋,等. 金属塑性成形的晶体塑性学有限元模拟研究进展[J]. 机械工程学报, 2006, 42(3):15-21.
PI Huachun, HANG Jingtao, XUE Yongdong, et al. Development on Crystal Plasticity Finite Element Modeling in Metal Forming[J]. Journal of Mechanical Engineering, 2006, 42(3):15-21.
[76]MOHAMED M S, FOSTER A D, LIN J, et al. Investigation of Deformation and Failure Features in Hot Stamping of AA6082:Experimentation and Modelling[J]. International Journal of Machine Tools and Manufacture, 2012, 53(1):27-38.
[77]LIN J, CHEONG B H, YAO X. Universal Multi-objective Function for Optimising Superplastic-damage Constitutive Equations[J]. Journal of Materials Processing Technology, 2002, 125(2):199-205.
[78]LIN J, MOHAMED M, BALINT D,et al. The Development of Continuum Damage Mechanics-based Theories for Predicting Forming Limit Diagrams for Hot Stamping Applications[J]. International Journal of Damage Mechanics, 2014, 23(5):684-701.
[79]庄蔚敏, 曹德闯, 叶辉. 基于连续介质损伤力学预测 7075铝合金热冲压成形极限图[J]. 吉林大学学报(工学版), 2014(2):409-414.
ZHUANG Weimin, CAO Dechuang, YE Hui. Prediction of FLD for AA7075 under Hot Stamping Based on Continuum Damage Mechanics[J]. Journal of Jilin University (Engineering and Technology Edition), 2014(2):409-414.
[80]黄诗尧. AZ31镁合金挤压成形微观组织演化的试验研究与数值模拟[D]. 上海:上海交通大学, 2010.
HUANG Shiyao. Numerical and Experimental Research on the Microstructure Evolution of Magnesium Alloy AZ31 during Extrusion Process[D]. Shanghai:Shanghai Jiao Tong University, 2010.
[81]周国伟. AZ31B 镁合金板材温热塑性变形机制与成形极限的实验与理论研究[D]. 上海:上海交通大学, 2016.
ZHOU Guowei. Experimental and Crystal Plasticity Analysis on the Deformation Mechanisms and Forming Limit of AZ31B Mg Alloy Sheet at Warm Conditions[D]. Shanghai:Shanghai Jiao Tong University, 2016.
[82]WANG H, WU P D, TOMé C N, et al. A Constitutive Model of Twinning and Detwinning for Hexagonal Close Packed Polycrystals[J]. Materials Science and Engineering: A, 2012, 555(5):93-98.
[83]蓝永庭, 陆大敏, 刘贵龙,等. AZ31镁合金晶体塑性行为与细观非均匀变形的数值模拟[J]. 中国有色金属学报, 2014(12):2985-2994.
LAN Yongting, LU Damin, LIU Guilong, et al. Numerical Simulation of Plastic Behavior and Meso Inhomogeneous Deformation in AZ31 Mg Alloy[J]. Chinese Journal of Nonferrous Metals, 2014, 24(12):2985-2994.
|
[1] | 张东, 刘啸奔, 孔天威, 杨悦, 武学健, 吴锴, 张宏. 高钢级管道焊缝材料应力应变本构关系确定方法[J]. 中国机械工程, 2023, 34(17): 2106-2114. |
[2] | 李秀儒, 魏兆成, 郭明龙, 王敏杰, 郭江, 高伟, 孙昉. 考虑热塑性变形的316H不锈钢Johnson-Cook本构参数逆向识别[J]. 中国机械工程, 2022, 33(07): 864-871. |
[3] | 田宪华, 闫奎呈, 赵军, 王情情, 王延庆, 陈笑然, . GH2132高温高应变率下力学性能分析与Johnson-Cook本构模型的建立[J]. 中国机械工程, 2022, 33(07): 872-881. |
[4] | 曹军义, 刘清华, 洪军. 螺栓连接微观摩擦到宏观动力学研究综述[J]. 中国机械工程, 2021, 32(11): 1261-1273. |
[5] | 范依航, 战纯勇, 郝兆朋. SiCp/2024Al复合材料高应变率热变形行为的新本构模型#br#[J]. 中国机械工程, 2021, 32(11): 1346-1353. |
[6] | 钟明君, 王克鲁, 程静, 欧阳德来, 崔霞, 李鑫. TNTZ钛合金流变行为及物理基本构模型[J]. 中国机械工程, 2021, 32(10): 1233-1239. |
[7] | 刘志强, 赵杰, 王克环, 武永, 吕良星, 刘钢, 苑世剑, . [成形过程仿真优化与集成计算材料工程]钛合金热成形工艺形变与组织演变耦合多尺度仿真研究进展[J]. 中国机械工程, 2020, 31(22): 2678-2690,2698. |
[8] | 聂昕1;肖兵兵1;申丹凤2;郭文峰1. 考虑变形热和摩擦热效应的热力耦合冲压研究[J]. 中国机械工程, 2020, 31(16): 2005-2015. |
[9] | 张宏建1;温卫东1,2;崔海涛1;肖健峰1. IC10合金的动态回复/再结晶本构行为研究[J]. 中国机械工程, 2017, 28(18): 2256-2261. |
[10] | 周松;许良;回丽;王磊;马少华;韩放. 不同腐蚀环境下高强铝合金腐蚀行为[J]. 中国机械工程, 2017, 28(16): 2000-2007. |
[11] | 艾建光, 姜峰, 言兰. TC4-DT钛合金材料动态力学性能及其本构模型[J]. 中国机械工程, 2017, 28(05): 607-616. |
[12] | 赵金娟, 王世军, 杨超, 王诗义, 杨慧新. 基于横观各向同性假定的固定结合部本构关系及有限元模型[J]. 中国机械工程, 2016, 27(08): 1007-1011. |
[13] | 陈娟, 刘焜. 电场活化聚合物驱动器动态机电耦合特性研究[J]. 中国机械工程, 2015, 26(19): 2575-2580. |
[14] | 王巧玲, 唐炳涛, 郑伟. 一种修正的Norton-Hoff本构模型及实验验证[J]. 中国机械工程, 2015, 26(14): 1978-1982. |
[15] | 曹淑芬, 张立强, 郭鹏程, 李落星. 22MnB5热变形行为研究及本构方程建立[J]. 中国机械工程, 2014, 25(9): 1256-1261. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||