[1]吴义舟,郭爱红.生物医用钛合金发展和研究现状[J].材料开发与应用,2010,25(2):81-85.
WU Yizhou, GUO Aihong. The Development and Research Present Status of Biomedical Titanium Alloys[J]. Development and Application of Material, 2010,25(2):81-85.
[2]于振涛,余森,程军,等.新型医用钛合金材料的研发和应用现状[J].金属学报,2017,53(10):1238-1264.
YU Zhentao, YU Sen, CHENG Jun,et al. Development and Application of Novel Biomedical Titanium Alloy Materials[J]. Acta Metallurgica Sinica, 2017, 53(10):1238-1264.
[3]NIINOMI M, NAKAI M, HIEDA J. Development of New Metallic Alloys for Biomedical Applications[J]. Acta Biomaterialia,2012,8(11):3888-3903.
[4]李展志,李慧中,王海军,等.6069铝合金的热变形行为和加工图[J].粉末冶金材料科学与工程, 2011, 16(2):155-161.
LI Zhanzhi, LI Huizhong, WANG Haijun, et al. Hot Deformation Behavior and Processing Map of 6069 Aluminum Alloy[J]. Materials Science and Engineering of Powder Metallurgy,2011,16(2):155-161.
[5]黄海广,张玉勤,蒋业华,等.放电等离子烧结温度对Ti-29Nb-13Ta-4.5Zr合金显微组织和力学性能的影响[J].稀有金属材料与工程,2013,42(6):1173-1177.
HUANG Haiguang, ZHANG Yuqin, JIANG Yehua, et al. Effect of Spark Plasma Sintering Temperatures on Microstructure and Mechanical Properties of Ti-29Nb-13Ta-4.5Zr Alloy[J]. Rare Metal Materials and Engineering,2013,42(6):1173 -1177.
[6]王冉. Y2O3/TNTZ生物钛合金腐蚀磨损性能研究[D].沈阳:东北大学,2014.
WANG Ran. Research on Corrosion Wear Characteristics of Y2O3/TNTZ Bio-titanium Alloy[D]. Shenyang:Northeastern University, 2014.
[7]郭彪,葛昌纯,徐轶,等.喷射成形FGH95高温变形流变应力行为与预测[J].中国有色金属学报, 2012,22(11):3029-3037.
GUO Biao, GE Changchun, XU Yi, et al. Flow Stress Behavior and Prediction of Spray-forming FGH95 Superalloy at Elevated Temperature[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(11):3029-3037.
[8]曲凤盛,王震宏,张浩.V-5Cr-5Ti合金高温变形本构模型[J].中国有色金属学报,2014,24(12):3009-3015.
QU Fengsheng, WANG Zhenhong, ZHANG Hao.Constitutive Modeling for High Temperature Flow Behavior of V-5Cr-5Ti Alloy[J].The Chinese Journal of Nonferrous Metals, 2014,24(12):3009-3015.
[9]李雪飞,黄旭,黄利军,等.TC27钛合金高温热压缩变形行为[J].稀有金属材料与工程, 2016, 45 (3):793-797.
LI Xuefei, HUANG Xu, HUANG Lijun, et al. Deformation Behavior of Hot Compression for TC27 Titanium Alloy[J]. Rare Metal Materials and Engineering, 2016, 45 (3):793-797.
[10]曹淑芬,张立强,郭鹏程,等.22MnB5热变形行为研究及本构方程建立[J].中国机械工程, 2014, 25(9):1256-1261.
CAO Shufen, ZHANG Liqiang, GUO Pengcheng, et al. Study on Hot Deformation Behavior and Flow Stress Constitutive Model of 22MnB5 at High Temperature[J].China Mechanical Engineering, 2014, 25(9):1256-1261.
[11]骆俊廷,陈艺敏,尹宗美,等.TA15钛合金热变形应力应变曲线及本构模型[J].稀有金属材料与工程, 2017,46(2):399-405.
LUO Junting, CHEN Yimin, YIN Zongmei, et al. Stress Strain Curve and Constitutive Model of TA15 Titanium Alloy in Hot Deformation[J]. Rare Metal Materials and Engineering, 2017,46 (2):399-405.
[12]吴文祥,韩逸,钟皓,等.2026铝合金热压缩变形流变应力行为[J].中国有色金属学报, 2009, 19(8):1403-1408.
WU Wenxiang, HAN Yi, ZHONG Hao, et al. Flow Stress Behavior of 2026 Aluminium Alloy under Hot Compression Deformation[J].The Chinese Journal of Nonferrous Metals, 2009, 19(8):1403-1408.
[13]李伟,高家诚.Mg-6.5Y-2.5Nd-0.6Zr合金热压缩变形流变应力行为[J].材料热处理学报, 2011,32 (3):40-46.
LI Wei,GAO Jiacheng. Flow Stress Behavior of Mg-6.5Y-2.5Nd-0.6Zr Alloy during Hot Compression Deformation[J]. Transactions of Materials and Heat Treatment, 2011,32 (3):40-46.
[14]彭小娜. 损伤容限型TC4-DT合金锻件组织性能控制研究[D].西安:西北工业大学,2014.
PENG Xiaona. Study on the Control of Microstructure and Mechanical Properties of Damage Tolerance Titanium Alloy TC4-DT Forging[D]. Xian:Northwestern Polytechnical University,2014.
[15]陈明和,王宁.高强铝合金热塑性变形本构关系研究现状及发展趋势[J].中国机械工程,2020,31 (8):997-1007.
CHENG Minghe, WANG Ning. Current Research and Development Trends in Constitutive Relation for High Strength Aluminum Alloys in Hot Plastic Deformation[J]. China Mechanical Engineering,2020,31(8):997- 1007.
[16]CABRERA J M, OMAR A A, PRADO J M, et al. Modeling the Flow Behavior of a Medium Carbon Microalloyed Steel under Hot Working Conditions[J]. Metallurgical and Materials Transactions A, 1997, 28 (11):2233-2244.
[17]WEI Hailian, LIU Guoquan, ZHANG Minghe. Physically Based Constitutive Analysis to Predict Flow Stress of Medium Carbon and Vanadium Microalloyed Steels[J]. Materials Science and Engineering A, 2014,602:127-133.
[18]FROST H J,ASHBY M F. Deformation-mechanism Maps:the Plasticity and Creep of Metals and Ceramics[M]. Oxford:Pergamon Press, 1982.
[19]KHERADMANDFARD M, KASHANI-BOZORG S F, LEE J S, et al. Significant Improvement in Cell Adhesion and Wear Resistance of Biomedical β-type Titanium Alloy through Ultrasonic Nanocrystal Surface Modification[J].Journal of Alloys and Compounds,2018,762:941-949.
[20]吴全兴.用氧化钙系铸型铸造的牙科用TNTZ钛合金的力学性能[J].钛工业进展,2012,29(1):46.
WU Quanxing. Mechanical Properties of Dental TNTZ Titanium Alloy Cast with Calcium Oxide Mold[J].Titanium Industry Progress,2012,29(1):46.
[21]MIRZADEH H, CABRERA J M, NAJAFIZA-DEH A. Constitutive Relationships for Hot Deformation of Austenite[J]. Acta Materialia,2011,59(16):6441-6448.
[22]WANG S, LUO J R, HOU L G, et al. Physically Based Constitutive Analysis and Microstructural Evolution of AA7050 Aluminum Alloy during Hot Compression[J]. Materials and Design,2016, 107:277-289.
|