中国机械工程 ›› 2022, Vol. 33 ›› Issue (05): 506-528.DOI: 10.3969/j.issn.1004-132X.2022.05.001
杨简彰1;王成勇1;袁尧辉1,2;袁松梅3;王西彬4;梁赐乐1;李伟秋2
出版日期:
2022-03-10
发布日期:
2022-03-22
通讯作者:
王成勇(通信作者),男,1964年生,教授、博士研究生导师。研究方向为难加工材料的高速高效精密超精密加工理论、工艺、刀具与装备技术。E-mail:cywang@gdut.edu.cn。
作者简介:
杨简彰,男,1995年生,博士研究生。研究方向为难加工材料绿色切削技术。E-mail:654345318@qq.com。
基金资助:
YANG Jianzhang1;WANG Chengyong1;YUAN Yaohui1,2;YUAN Songmei3;WANG Xibin4;LIANG Cile1;LI Weiqiu2
Online:
2022-03-10
Published:
2022-03-22
摘要: 微量润滑技术具有切削液用量少、润滑效率高等优点,但在特定工况下仍存在冷却性不足以及润滑不充分等问题。微量润滑复合增效技术,如低温冷风、液态CO2等,综合了良好冷却和润滑优势,可有效解决难加工材料清洁切削加工难题。综述了各类微量润滑复合增效技术原理、关键装置及其工艺应用最新研究进展,详细剖析了各类装置性能及其参数调控特性。结合微量润滑复合增效应用形式和作用机制,系统分析了其在钛合金、镍基合金、不锈钢等难加工材料的应用性能,并对各类微量润滑复合增效技术进行了可持续性分析,为清洁切削技术的工程应用提供技术支撑和参考。
中图分类号:
杨简彰, 王成勇, 袁尧辉, 袁松梅, 王西彬, 梁赐乐, 李伟秋. 微量润滑复合增效技术及其应用研究进展[J]. 中国机械工程, 2022, 33(05): 506-528.
YANG Jianzhang, WANG Chengyong, YUAN Yaohui, YUAN Songmei, WANG Xibin, LIANG Cile, LI Weiqiu. State-of-the-art on MQL Synergistic Technologies and Their Applications[J]. China Mechanical Engineering, 2022, 33(05): 506-528.
[1]KHANNA N, AGRAWAL C, PIMENOV D Y, et al. Review on Design and Development of Cryogenic Machining Setups for Heat Resistant Alloys and Composites[J]. Journal of Manufacturing Processes, 2021, 68:398-422. [2]KLOCKE F, EISENBLTTER G. Dry Cutting[J]. CIRP Annals—Manufacturing Technology, 1997, 46(2):519-526. [3]袁松梅, 韩文亮, 朱光远,等. 绿色切削微量润滑增效技术研究进展[J]. 机械工程学报, 2019, 55(5):175-185. YUAN Songmei, HAN Wenliang, ZHU Guang-yuan, et al. Recent Progress on the Efficiency Increasing Methods of Minimum Quantity Lubrication Technology in Green Cutting[J]. Journal of Mechanical Engineering, 2019,55(5):175-185. [4]林建斌, 吕涛, 黄水泉,等. 基于静电微量润滑技术的磨削加工性能试验研究[J].中国机械工程,2018,29(23):2783-2791. LIN Jianbin, LYU Tao, HUANG Shuiquan, et al. Experimental Investigation on Grinding Performance Based on EMQL Technology[J]. China Mechanical Engineering, 2018,29(23):2783-2791. [5]张高峰, 李景焘, 王志刚,等. 低温冷风纳米粒子微量润滑磨削轴承钢试验研究[J].中国机械工程,2019,30(19):2342-2348. ZHANG Gaofeng, LI Jingtao, WANG Zhigang, et al. Experimental Study on Nano-CMQL Grinding of Bearing Steels[J]. China Mechanical Engineering, 2019,30(19):2342-2348. [6]MARUDA R W, KROLCZYK G M, FELDSHTEIN E, et al. A Study on Droplets Sizes, Their Distribution and Heat Exchange for Minimum Quantity Cooling Lubrication (MQCL)[J]. International Journal of Machine Tools and Manufacture, 2016, 100:81-92. [7]孔晓瑶, 袁松梅, 朱光远,等.微量润滑系统参数对雾化特性的影响[J].中国机械工程,2021,32(5):579-586. KONG Xiaoyao, YUAN Songmei, ZHU Guang-yuan, et al. Influences of MQL System Parameters on Atomization Characteristics[J]. China Mechanical Engineering, 2021,32(5):579-586. [8]ROWE G W,SMART E F. The Importance of Oxygen in Dry Machining of Metal on a Lathe[J]. British Journal of Applied Physics, 2002, 14(12):924. [9]HONG S Y, DING Y, JEONG W C. Friction and Cutting Forces in Cryogenic Machining of Ti-6Al-4V[J]. International Journal of Machine Tools & Manufacture, 2001, 41(15):2271-2285. [10]韩荣第, 吴健. 绿色切削技术探讨[J]. 工具技术, 2006, 40(12):8-10. HAN Rongdi, WU Jian. Study on Green Cutting Technologies[J]. Tool Engineering, 2006, 40(12):8-10. [11]横川和彦, 横川宗彦. 環境にやさしい冷風研削·切削加工 総論 環境にやさしい冷風加工技術[J]. 機械と工具, 1998(7):46-56. YOKOGAWA K, YOKOGAWA M. Environment-friendly Cold Blast Grinding and Cutting. General Remarks. Environment-friendly Cold Blast Machining Technology[J]. Japanese Journal of Machine and Tool,1998(7):46-56. [12]HEISEL U, LUTZ M, SPATH D, et al. Application of Minimum Quantity Cooling Lubrication Technology in Cutting Processes[J]. Production Engineering, 1994, 2(1):7123. [13]陳徳成. 高ケイ素アルミニウム合金の切削面に及ぼす潤滑及び冷風の効果[C]∥精密工学会大会学術講演会. 东京, 1999. CHEN D C. Effects of MQL and Cold Air on Cutting Interface of High Silicon Aluminum Alloys Machining[C]∥Journal of the Japan Society for Precision Engineering. Tokyo, 1999. [14]中村隆, 松原十三生. 環境を重視した微量油膜付水滴加工液の研究[C]∥精密工学会大会学術講演会. 东京, 1999:550. NAKAMURAT, MATSUBARA T. Research on Performance of Cutting Fluid with Oil-on-Water Technology [C]∥Journal of the Japan Society for Precision Engineering. Tokyo, 1999:550. [15]CLARENS A F, HAYES K F, SKERLOS S J. Feasibility of Metalworking Fluids Delivered in Supercritical Carbon Dioxide[J]. Journal of Manufacturing Processes, 2006, 8(1):47-53. [16]刘志峰, 黄海鸿, 李新宇. 绿色制造理论方法及应用[M]. 北京:清华大学出版社, 2021. LIU Zhifeng, HUANG Haihong, LI Xinyu. Green Machining Theory Method and Application[M]. Beijing:Tsinghua University Press, 2021. [17]HERBERT S, EBERHARD A, 何宁. 高速加工理论与应用[M]. 北京:科学出版社. 2010. HERBERT S, EBERHARD A, HE Ning. High Speed Machining Theory and Application[M]. Beijing:Science Press, 2010. [18]罗杰, 王成勇, 袁尧辉, 等. 微量润滑技术在切削加工中的应用[J].机电工程技术,2017, 46(5):1-9. LUO Jie, WANG Chengyong, YUAN Yaohui, et al. Research on the Application of Minimum Quantity Lubrication Technology in Machining[J]. Mechanical & Electrical Engineering Technology, 2017, 46(5):1-9. [19]李晋年, 袁哲俊. 黑色金属的超低温金刚石超精密切削[J]. 机械工程学报, 1989, 25(1):69-72. LI Jinnian, YUAN Zhejun. Ultra Precision Diamond Cutting of Ferrous Metals at Low Temperature [J]. Journal of Mechanical Engineering, 1989, 25(1):69-72. [20]王西彬. 绿色切削加工技术的研究[J]. 机械工程学报, 2000, 36(8):6-9. WANG Xibin. Green Machining Technology in metal Cutting[J]. Chinese Journal of Mechanical Engineering, 2000, 36(8):6-9. [21]王成勇. 用最小量冷却液法钻削航空铝-钛多层复合板[J]. 机械工程学报, 2002, 38(6):93-96. WANG Chengyong. Al-Ti Compound Plantes Dry Drilling By Means of MMS Method[J]. Chinese Journal of Mechanical Engineering, 2002, 38(6):93-96. [22]李新龙. 基于低温氮气和微量润滑技术的钛合金高速铣削技术研究[D]. 南京:南京航空航天大学,2004. LI Xinlong. Study on the High Speed Milling of Titanium Alloy Based on Cooled Gaseous Nitrogen and Minimal Quantities of Lubricant Technology[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2004. [23]巩三动,任家隆,姜左,等.绿色冷却切削技术在滚切齿轮中的试验研究[J].机械工程师,2005(3):21-23. GONG Sandong, REN Jialong, JIANG Zuo, et al. Experimental Research on the Green Cooling Cutting Technology Application in Hobbing[J]. Mechanical Engineer,2005(3):21-23. [24]周春宏, 赵汀, 姚振强. 最少量润滑切削技术(MQL)——经济有效的绿色制造方法[J]. 机械设计与研究, 2005, 21(5):81-83. ZHOU Chunhong, ZHAO Ting, YAO Zhen-qiang. MQL—an Economical Solution to Sustainable Manufacturingwith High Efficiency[J]. Machine Design & Research, 2005, 21(5):81-83. [25]颜科红, 李长生, 朱成顺,等. 喷雾冷却和刀具表面涂层复合润滑在切削加工中的应用[J]. 机械工程材料, 2005, 29(7):17-19. YAN Kehong, LI Changsheng, ZHU Chengshun, et al. Application of Compounded Lubrication with Mist Cooling and Coated Cutter Technology to Machining[J]. Materials for Mechanical Engineering,2005, 29(7):17-19. [26]袁松梅,严鲁涛,刘强. 微量润滑技术及关键问题研究[C]∥2007年中国科学技术协会年.武汉,2007:298-301. YUAN Songmei,YAN Lutao, LIU Qiang. Research on Minimum Quantity Lubrication Technology and Key Problems[C]∥Proceedings of the Annual Meeting of China Association for Science and Technology in 2007. Wuhan,2007:298-301. [27]LI C H, HOU Y L, XIU S C, et.al. Application of Lubrication Theory to Near-dry Green Grinding-feasibility Analysis[J]. Advanced Materials Research, 2008, 44/46:135-142. [28]王成勇. 难加工材料绿色高效切削关键技术与装备[DB/OL]. 2018[2022-01-01].https:∥kns.cnki.net/kcms/detail/detail.aspx?dbcode=SNAD& dbname=SNAD&filename=SNAD000001771367 &uniplatform=NZKPT&v=TjRX_0fSS4tca0 YTG6bflwq3gC8FFtEOly4sYgE6ldNtxLzhl8twR2 bV2-hh2hP_5X-SY563vXE%3d. WANG Chengyong. Key Technologies and Equipment for Green and Efficient Cutting of Difficult Machining Materials[DB/OL]. 2018[2022-01-01]. https:∥kns.cnki.net/kcms/detail/detail.aspx?dbcode=SNAD&dbname=SNAD&filename=SNAD000001771367&uniplatform=NZKPT&v=TjRX_0fSS4tca0YTG6bflwq3gC8FFtEOly4sYgE6ld NtxLzhl8twR2bV2-hh2hP_5X-SY563vXE%3d. [29]CHETAN, GHOSH S, RAO P V. Application of Sustainable Techniques in Metal Cutting for Enhanced Machinability:a Review[J]. Journal of Cleaner Production, 2015, 100(1):17-34. [30]BOSWELL B, ISLAM M N, DAVIES I J, et al. A Review Identifying the Effectiveness of Minimum Quantity Lubrication (MQL) during Conventional Machining[J]. International Journal of Advanced Manufacturing Technology, 2017,92:321-340. [31]KALE A, KHANNA N. A Review on Cryogenic Machining of Super Alloys Used in Aerospace Industry[J]. Procedia Manufacturing, 2017, 7:191-197. [32]SENEVIRATHNE S, FERNANDO M. Effect of Cryogenic Cooling on Machining Performance on Hard to Cut Metals—a Literature Review[C]∥National Engineering Conference 2012, 18th ERU Symposium. Moratuwa,2012. [33]RAVI S, GURUSAMY P. Role of Cryogenic Machining:a Sustainable Manufacturing Process[J]. Materials Today:Proceedings, 2021, 37(2):316-320. [34]刘永姜. 油膜附水滴切削液雾化机理理论分析及其实验研究[D].太原:中北大学, 2010. LIU Yongjiang. Theoretical Analysis of Atomization Mechanism and Experimental Study of Oils on Water (OoW) Cutting Fluid[D]. Taiyuan:North University of China, 2010. [35]LIN Haisheng, WANG Chengyong, YUAN Yaohui, et al. Tool Wear in Ti-6Al-4V Alloy Turning under Oils on Water Cooling Comparing with Cryogenic Air Mixed with Minimal Quantity Lubrication[J]. The International Journal of Advanced Manufacturing Technology,2015,81(1/4):87-101. [36]王爱玲, 魏源迁, 赵跃文, 等. 油膜附水滴加工液的物理特性与加工性能[J].金刚石与磨料磨具工程, 2004(1):5-9. WANG Ailing, WEI Yuanqian, ZHAO Yuewen, et al. Physical Characteristics and Machining Performances of the Machining fluids of Oils on Water[J]. Diamond & Abrasives Engineering, 2004(1):5-9. [37]LIAO Y S, LIAO C H, LIN H M. Study of Oil-water Ratio and Flow Rate of MQL Fluid in High Speed Milling of Inconel 718[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(2):257-262. [38]李蓉, 王爱玲, 郑智贞, 等. 雾状油膜水滴冷却润滑车削试验研究[J]. 现代制造工程, 2007(2):19-22. LI Rong, WANG Ailing, ZHENG Zhizhen, et al. Study of Using Cooling and Lubrication Method with Oils on Water in Cutting Experiment[J]. Modern Manufacturing Engineering, 2007(2):19-22. [39]李文举, 王彪, 刘永姜,等. 1Cr18Ni9Ti不锈钢车削加工中油膜附水滴冷却润滑技术研究[J]. 中国机械工程, 2014, 25(6):747-750. LI Wenju, WANG Biao, LIU Yongjiang, et al.Study on Cooling and Lubrication Technology of Oil-on-water in Cutting 1Cr18Ni9Ti Stainless Steel[J]. China Mechanical Engineering, 2014, 25(6):747-750. [40]刘日韦,贺连梁,唐健,等.基于复合喷雾冷却的TC4钛合金切削温度的研究[J].工具技术,2014,48(4):25-27. LIU Wei, HE Lianliang, TANG Jian, et al. Research on Cutting Temperature of TC4 Titanium Alloy Based on Composite Spray Cooling [J]. Tool Engineering, 2014,48(4):25-27. [41]WU Shixiong, BI Jundong, LAI Zhiyang, et al. Feasibility Study of Oil-on-water Cooling in High-speed End Milling of Hardened Steel[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(1/2):271-292. [42]DING Feng, WANG Chengyong, LIN Haisheng, et al. Research on Machining Compacted Graphite Iron under Oil-on-water Cooling and Lubrication Conditions Based on Modified Material Model[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(12):5061-5079. [43]LAI Zhiwei, WANG Chengyong, ZHENG Lijuan, et al. Effect of Cryogenic Oils-on-water Compared with Cryogenic Minimum Quantity Lubrication in Finishing Turning of 17-4PH Stainless Steel[J]. Machining Science and Technology, 2020, 24(6):1016-1036. [44]苏宇, 何宁, 李亮. 冷风切削对高速切削难加工材料刀具磨损的影响[J]. 摩擦学学报, 2010, 30(5):485-490. SU Yu, HE Ning, LI Liang. Effect of Refrigerated Air Cutting on Tool Wear in High-speed Cutting of Difficult-to-cut Materials[J]. Tribology, 2010, 30(5):485-490. [45]刘晓丽. 基于微量润滑的切削环境空气质量检测与分析[D]. 南京:南京航空航天大学, 2012. LIU Xiaoli. The Detection and Analysis of Ambient Air Quality in the Cutting Process Based on Minimal Quantity Lubrication[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2012. [46]ZHANG S, LI J F, WANG Y W. Tool Life and Cutting Forces in End Milling Inconel 718 under Dry and Minimum Quantity Cooling Lubrication Cutting Conditions[J]. Journal of Cleaner Production, 2012, 32:81-87. [47]陈东建, 刘永姜, 邵延君,等. 钛合金车削中的低温油膜水滴冷却润滑技术[J]. 机械设计与制造,2014(1):118-120. CHEN Dongjian, LIU Yongjiang, SHAO Yanjun, et al. The Cryogenic Oils on Water Cooling Technology in Turning Process of Titanium Alloy[J]. Machinery Design & Manufacture, 2014(1):118-120. [48]张慧萍, 靳杰, 王尊晶,等. 低温微量润滑高速车削高强度钢表面质量研究[J].哈尔滨理工大学学报,2019,24(6):33-40. ZHANG Huiping, JIN Jie, WANG Zunjing, et al. Study on the Machined Surface Quality in High Speed Turning High Strength Steel under Cryogenic Minimum Quantity Lubrication[J]. Journal of Harbin University of Science and Technology, 2019,24(6):33-40. [49]WANG Y, YUN H, ZHI H, et al. Belt Grinding of TC4 Based on the Technology of Cryogenic Mist Jet Combined MQL[J]. Key Engineering Materials, 2009, 416:8-12. [50]SU Y, HE N, LI L, et al. An Experimental Investigation of Effects of Cooling/Lubrication Conditions on Tool Wear in High-speed End Milling of Ti-6Al-4V [J]. Wear, 2006, 261(7/8):760-766. [51]苏宇, 何宁, 李亮,等. 低温氮气射流对钛合金高速铣削加工性能的影响[J]. 中国机械工程, 2006,17(11):1183-1187. SU Yu, HE Ning, LI Liang, et al. Effects of Cryogenic Nitrogen Gas Jet on Machinability of Ti-Alloy in High Speed Milling[J]. China Mechanical Engineering, 2006,17(11):1183-1187. [52]JAWAHIR I S, ATTIA H, BIERMANN D, et al. Cryogenic Manufacturing Processes[J]. CIRP Annals—Manufacturing Technology, 2016,65:713-36. [53]SARTORI S, GHIOTTI A, BRUSCHI S. Hybrid Lubricating/Cooling Strategies to Reduce the Tool Wear in Finishing Turning of Difficult-to-cut Alloys[J]. Wear, 2017, 376/377:107-114. [54]DANISH M, GUPTA M K, RUBAIEE S, et al. Influence of Hybrid Cryo-MQL Lubri-cooling Strategy on the Machining and Tribological Characteristics of Inconel 718[J]. Tribology International, 2021, 163:107178. [55]NGUYEN T, ZARUDI I, ZHANG L C. Grinding-hardening with Liquid Nitrogen:Mechanisms and Technology[J]. International Journal of Machine Tools & Manufacture, 2007, 47(1):97-106. [56]GRGURAS D, STERLE L, KRAJNIK P, et al. A Novel Cryogenic Machining Concept Based ona Lubricated Liquid Carbon Dioxide[J]. International Journal of Machine Tools and Manufacture, 2019, 145:103456. [57]BERGS T, PUAVEC F, KOCH M, et al. Investigation of the Solubility of Liquid CO2 and Liquid Oil to Realize an Internal Single Channel Supply in Milling of Ti6Al4V[J]. Procedia Manufacturing, 2019, 33:200-207. [58]AUGSPURGER T, KOCH M, LAKNER T,et al. Development of a Virtual Sensor for the Comparison of Heat Partitions in Milling under Cryogenic Cooling Lubrication and High-pressure Cutting Fluid Supply[J]. CIRP Journal of Manufacturing Science and Technology, 2021, 35(2):118-131. [59]STERLE L, MALLIPEDDI D, KRAJNIK P, et al. The Influence of Single-channel Liquid CO2 and MQL Delivery on Surface Integrity in Machining of Inconel 718[J]. Procedia CIRP, 2020, 87:164-169. [60]梁向东, 胡孟谦, 解景浦,等. 难加工材料绿色切削技术与CO2增效工艺[J]. 金属加工:冷加工, 2021(7):6-8. LIANG Xiangdong, HU Mengqian, XIE Jingpu, et al. Green Machining and CO2 Synergistic Technology for Difficult Machining Materials[J]. Metal Working(Metal Cutting), 2021(7):6-8. [61]CLARENS A F, HAYES K F, SKERLOS S J. Feasibility of Metalworking Fluids Delivered in Supercritical Carbon Dioxide[J]. Journal of Manufacturing Processes, 2006, 8(1):47-53. [62]SUPEKAR S D, CLARENS A F, STEPHENSON D A, et al. Performance of Supercritical Carbon Dioxide Sprays as Coolants and Lubricants in Representative Metalworking Operations[J]. Journal of Materials Processing Technology, 2012, 212(12):2652-2658. [63]STEPHENSON D A, SKERLOS S J, KING A S, et al. Rough Turning Inconel 750 with Supercritical CO2-based Minimum Quantity Lubrication[J]. Journal of Materials Processing Technology, 2014, 214(3):673-680. [64]BOSWELL B, ISLAM M N, DAVIES I J, et al. A Review Identifying the Effectiveness of Minimum Quantity Lubrication (MQL) during Conventional Machining[J]. The International Journal of Advanced Manufacturing Technology, 2017, 92(1/4):321-340. [65]卢家锋. 低温冷风微量润滑切削技术发展及应用[J]. 模具制造,2019,19(9):70-73. LU Jiafeng. Development and Application of Cryogenic MQL Cutting Technology[J]. Die & Mould Manufacture, 2019,19(9):70-73. [66]DUTTA T, SINHAMAHAPATRA K P, BANDYOPDHYAY S S. Comparison of Different Turbulence Models in Predicting the Temperature Separation in a Ranque-Hilsch Vortex Tube[J]. International Journal of Refrigeration, 2010, 33(4):783-792. [67]SALAAM H A, TAHA Z, YA T T. Minimum Quantity Lubrication (MQL) Using Ranque-Hilsch Vortex Tube (RHVT) for Sustainable Machining[J]. Applied Mechanics and Materials, 2012,217/219:2012-2015. [68]GAO C M, BOSSCHAART K J, ZEEGERSJ, et al. Experimental Study on the Ranque-Hilsch Vortex Tube[J]. Cryogenics, 2005, 45(3):173-183. [69]袁松梅, 刘伟东, 张贺磊. 一种收缩式阿基米德型线涡流管喷嘴:CN102003825A[P].2010-09-21. YUAN Songmei, LIU Weidong, ZHANG Helei. Retractable Archimedes Type Line Vortex Tube Nozzle:CN102003825A[P].2010-09-21. [70]AGRAWAL N, NAIK S S, GAWALE Y P. Experimental Investigation of Vortex Tube Using Natural Substances[J]. International Communications in Heat and Mass Transfer, 2014, 52:51-55. [71]KO T J, KIM H S, CHUNG B G. Air-oil Cooling Method for Turning of Hardened Material[J]. International Journal of Advanced Manufacturing Technology, 1999, 15(7):470-477. [72]李智扬, 吴世雄, 毕君东. 气体风冷高速铣削的刀具磨损研究[J].机械设计与制造,2021(1):88-90. LI Zhiyang,WU Shixiong,BI Jundong. Research on the Tool Wear of High Speed Milling with Air Cooling Method[J]. Machinery Design & Manufacture,2021(1):88-90. [73]SARIKAYA M, GUPTA M K, TOMAZ I, et al. Cooling Techniques to Improve the Machinability and Sustainability of Light-weight Alloys:a State-of-the-art Review[J]. Journal of Manufacturing Processes, 2021, 62:179-201. [74]童明伟, 张震, 童明健,等. 低温空气冷却装置:CN2336289[P].1999-09-01. TONG Mingwei, ZHANG Zhen, TONG Mingjian, et al. Cooling Equipment with Cryogenic Air:CN2336289[P].1999-09-01. [75]熊伟强, 龚林, 王成勇,等. 低温水雾油雾切削冷却润滑供应系统:CN106863002B[P].2019-09-13. XIONG Weiqiang, GONG Lin, WANG Chengyong et al. Cooling Oil-on-water Equipment with Cryogenic Air:CN106863002B[P].2019-09-13. [76]颜炳姜, 李伟秋, 王勇. 低温冷风制冷系统及其控制方法,微量润滑冷却系统:CN110375452A[P]. 2019-10-25. YAN Bingjiang, LI Weiqiu, WANG Yong, et al. Cryogenic Air Refrigeration System and Control Method, MQL System:CN110375452A[P]. 2019-10-25. [77]王永青, 韩灵生, 刘阔,等. 超低温加工机床的液氮冷却介质可靠传输与精准调控[J]. 机械工程学报, 2020, 56(1):187-195. WANG Yongqing, HAN Lingsheng, LIU Kuo, et al. Reliable Transmission and Precise Regulation of Liquid Nitrogen as the Coolant of Cryogenic Machine Tool[J]. Journal of Mechanical Engineering, 2020, 56(1):187-195. [78]GHOSH R, KNOPF J A, GIBSON D J, et al. Cryogenic Machining of Polymeric Biomaterials:an Intraocular Lens Case Study[C]∥Medical Device Materials IV:Proceedings of the Materials & Processes for Medical Devices Conference 2007. Palm Desert,2007:54. [79]ZURECKI Z, FREY J H, TREMBLEY J P. Apparatus and Method for Transferring a Cryogenic Fluid:US 6513336[P]. 2003-02-04. [80]KINARD D A. F-35 Production-advanced Manufacturing and the Digital Thread[C]∥2018 Aviation Technology, Integration, and Operations Conference, American Institute of Aeronautics and Astronautics. Atlanta, 2018:3369-3388. [81]王永青, 郭东明, 郭立杰,等. 超低温加工技术的研究现状及发展趋势[J].上海航天,2020,37(3):11-21. WANG Yongqing, GUO Dongming, GUO Lijie, et al.Research Status and Development Trend of Cryogenic Machining Technology[J]. Aerospace Shanghai, 2020,37(3):11-21. [82]LI Y, CHEN H, ZHANG X, et al. Renewable Energy Carriers:Hydrogen or Liquid Air/Nitrogen?[J]. Applied Thermal Engineering, 2010, 30(14/15):1985-1990. [83]ETINDAGˇ H A, IEK A, UAK N. The Effects of Cryo-MQL Conditions on Tool Wear and Surface Integrity in Hard Turning of AISI 52100 Bearing Steel[J]. Journal of Manufacturing Processes, 2020, 56:463-473. [84]PEREIRA O, RODRGUEZ A, FERNNDEZ-ABIA A I, et al. Cryogenic and Minimum Quantity Lubrication for an Eco-efficiency Turning of AISI 304[J]. Journal of Cleaner Production, 2016, 139:440-449. [85]BALAN A S S, VIJAYARAGHAVAN L, KRISHNAMURTHY R, et al. An Experimental Assessment on the Performance of Different Lubrication Techniques in Grinding of Inconel 751[J]. Journal of Advanced Research, 2016, 7(5):709-718. [86]陈冲,赵威,何宁,等 . 液氮冷却下大进给铣削TC4钛合金的试验研究[J].工具技术,2014,48(8):13-17. CHEN Chong, ZHAO Wei, HE Ning, et al.Experimental Study on High Feed Milling of TC4 Ti-Alloy in Liquid Nitrogen Cooling[J]. Tool Engineering,2014,48(8):13-17. [87]ZHAO W, GONG L, REN F,et al. Experimental Study on Chip Deformation of Ti-6Al-4V Titanium Alloy in Cryogenic Cutting [J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(9):4021-4027. [88]熊伟强, 张世德. 自动液氮复合喷雾冷却系统:CN207448030U[P]. 2018-06-05. XIONG Weiqiang, ZHANG Shide. Automatic Liquid Nitrogen Compound Spray Cooling System:CN207448030U[P]. 2018-06-05. [89]熊伟强. 一种环保型低冰点的水性切削液及其制备方法:CN201710868058.1[P]. 2018-02-09. XIONG Weiqiang. Environmentally Water-based Cutting Fluid Preparation Method with Low Freezing Point:CN201710868058.1[P]. 2018-02-09. [90]肖虎, 李亮. TC4钛合金在低温CO2冷却下的切削性能[J]. 中国机械工程, 2017, 28(8):883-887. XIAO Hu, LI Liang. High Speed Cutting of TC4 Titanium Alloy under Cryogenic CO2 Cooling Conditions[J]. China Mechanical Engineering, 2017, 28(8):883-887. [91]SORBO N W, DIONNE J J. Dry Drilling of Stackup Composite:Benefits of CO2 Cooling[J]. SAE International Journal of Aerospace, 2014, 7(1):156. [92]SCHILLER D, DIONNE J, JACKSON D. Method and Apparatus for Thermal Control with a Machining Process:US20120237311A1[P]. 2012-03-08. [93]DIPS. 干冰冷却润滑系统 [ER/OL]. [2022-2-10]. http:∥dips-hc.com/test2.html. DIPS. Dry Ice Cooling Lubrication System[ER/OL]. [2022-2-10]. [94]KNOLL. CO2复合微量润滑系统[ER/OL]. [2022-2-10]. http:∥www.knoll-mb.de/en/single-systems/mql-systems∥home-en. KNOLL. CO2 Composite Minimum Quantity Lubrication System[ER/OL]. [2022-2-10]. [95]CORDES S, HBNER F, SCHAARSCHMIDT T. Next Generation High Performance Cutting by Use of Carbon Dioxide as Cryogenics[J]. Procedia CIRP, 2014, 14:401-405. [96]GRGURA D, STERLE L, PUAVEC F. Cutting Forces and Chip Morphology in LCO2 + MQL Assisted Robotic Drilling of Ti6Al4V[J]. Procedia CIRP, 2021, 102:299-302. [97]肖虎, 李亮, 赵威. 液态二氧化碳冷却切削系统的研制与DT4切削中的应用[J].工具技术,2017,51(6):20-25. XIAO Hu, LI Liang, ZHAO Wei. Application of Carbon Dioxide Snow Coolant in Machining of Difficult Material[J]. Tool Engineering, 2017, 51(6):20-25. [98]周莉, 姚文铃, 陈裕君,等. 难加工材料高效切削的超临界二氧化碳低温微量润滑技术[J]. 工具技术, 2019, 53(4):3-5. ZHOU Li, YAO Wenling, CHEN Yujun, et al. Supercritical-CO2 Minimum Quantity Lubrication Technology for Hard-to-cut Materials[J]. Tool Engineering, 2019, 53(4):3-5. [99]斯科洛斯S J,哈耶斯K F,克拉伦斯A. 基于超临界二氧化碳的金属加工润滑制剂:CN101208415A[P]. 2008-06-25. SKELOS S J, HAYES K F, CLARENCE A. Lubricants for Metal Working Based on Supercritical Carbon Dioxide:CN101208415A[P]. 2008-06-25. [100]FUSION. Pure-Cut超临界CO2冷却系统. [ER/OL]. [2022-2-10].https:∥fusioncoolant.com/scCO2/. FUSION. Pure-Cut Supercritical CO2 Cooling System[ER/OL]. [2022-2-10]. [101]周莉, 姜黎明. 一种基于超临界二氧化碳的低温微量润滑装置:CN108202271A[P]. 2018-06-26. ZHOU Li, JIANG Liming. Cryogenic MQL Device Based on Supercritical Carbon Dioxide:CN108202271A[P]. 2018-06-26. [102]颜炳姜, 李伟秋, 莫大卓,等. 一种超临界二氧化碳供给调控系统:CN209157862U[P]. 2018-10-29. YAN Bingjiang, LI Weiqiu, MO Dazhuo, et al. Supercritical Carbon Dioxide Supply Control System:CN209157862U[P]. 2018-10-29. [103]颜炳姜, 李伟秋, 莫大卓,等. 一种超临界二氧化碳冷却系统:CN209524668U[P]. 2019-10-22. YAN Bingjiang, LI Weiqiu, MO Dazhuo, et al. Supercritical Carbon Dioxide Cooling System:CN209524668U[P]. 2019-10-22. [104]YUAN Yaohui, WANG Chengyong, YANG Jianzhang, et al. Performance of Supercritical Carbon Dioxide (scCO2) Mixed with Oil-on-water(OoW) Cooling in High-speed Milling of 316L Stainless Steel[J]. Procedia CIRP, 2018, 77:391-396. [105]CAI C, LIANG X, AN Q, et al. Cooling/Lubrication Performance of Dry and Supercritical CO2-based Minimum Quantity Lubrication in Peripheral Milling Ti-6Al-4V[J]. International Journal of Precision Engineering and Manufacturing—Green Technology, 2020, 8(2):405-421. [106]熊伟强, 王成勇. 一种超临界二氧化碳集中供液系统:CN107378635A[P]. 2017-09-22. XIONG Weiqiang, WANG Chengyong. Supercritical Carbon Dioxide Supply System:CN107378635A[P]. 2017-09-22. [107]PIMENOV D Y, MIA M, GUPTA M K, et al. Improvement of Machinability of Ti and Its Alloys Using Cooling-lubrication Techniques:a Review and Future Prospect[J]. Journal of Materials Research and Technology, 2021,11:719-53. [108]GAJRANI K K. Assessment of Cryo-MQL Environment for Machining of Ti-6Al-4V[J]. Journal of Manufacturing Processes, 2020, 60:494-502. [109]SCHOOP J, SALES W F, JAWAHIR I S. High Speed Cryogenic Finish Machining of Ti-6Al-4V with Polycrystalline Diamond Tools[J]. Journal of Materials Processing Technology, 2017, 250:1-8. [110]王相宇. 高温合金GH4169的切削加工性评价方法和本构模型研究[D]. 济南:山东大学,2016. WANG Xiangyu.Study on Cutting Performance Evaluation and Constitutive Model of Superalloy GH4169[D]. Jinan:Shandong University, 2016. [111]DANISH M, GUPTA M K, RUBAIEE S, et al. Influence of Hybrid Cryo-MQL Lubri-cooling Strategy on the Machining and Tribological Characteristics of Inconel 718[J]. Tribology International, 2021, 163:107178. [112]PEREIRA O, RODRGUEZ A, BARREIRO J, et al. Nozzle Design for Combined Use of MQL and Cryogenic Gas in Machining[J]. International Journal of Precision Engineering and Manufacturing—Green Technology, 2017, 4(1):87-95. [113]瘙塁IRIN 瘙塁, YILDIRIM V, KIVAK T, et al. Performance of Cryogenically Treated Carbide Inserts under Sustainable Cryo-lubrication Assisted Milling of Inconel X750 Alloy[J]. Sustainable Materials and Technologies, 2021, 29:e00314. [114]严鲁涛, 袁松梅, 刘强. 绿色切削高强度钢的刀具磨损及切屑形态[J]. 机械工程学报, 2010,46(9):187-192. YAN Lutao, YUAN Songmei, LIU Qiang. Tool Wear and Chip Formation in Green Machining of High Strength Steel[J]. Journal of Mechanical Engineering,2010,46(9):187-192. [115]STERLE L, KRAJNIK P, PUAVEC F. The Effects of Liquid-CO2 Cooling, MQL and Cutting Parameters on Drilling Performance[J]. CIRP Annals, 2021,70(1):79-82. [116]MULYANA T, RAHIM E A, YAHAYA S N M. The Influence of Cryogenic Supercritical Carbon Dioxide Cooling on Tool Wear during Machining High Thermal Conductivity Steel[J]. Journal of Cleaner Production, 2017, 164:950-962. [117]JAVARONI R L, LOPES J C, DINIZ A E, et al. Improvement in the Grinding Process Using the MQL Technique with Cooled Wheel Cleaning Jet[J]. Tribology International, 2020, 152:106512. [118]LAI Zhiwei, WANG Chengyong, ZHENG Lijuan, et al. Adaptability of AlTiN-based Coated Tools with Green Cutting Technologies in Sustainable Machining of 316L Stainless Steel[J]. Tribology International, 2020, 148(10):106300. [119]刘国汉,张良昌.一种含PTFE多层印制板钻孔方法:CN201310427072.X[P]. 2013-09-18. LIU Guohan, ZHANG Liangchang. DrillingMethod for Multilayer Printed Board Containing PTFE:CN201310427072.X[P]. 2013-09-18. [120]GIASIN K, AYVAR SOBERANIS S, HODZIC A.The effects of Minimum Quantity Lubrication and Cryogenic Liquid Nitrogen Cooling on Drilled Hole Quality in GLARE Fibre Metal Laminates[J]. Materials & Design,2016,89:996-1006. [121]LIN Dantian, WANG Chengyong, FU Lianyu, et al. Cryogenic Auxiliary Drilling of Printed Circuit Boards[J]. Circuit World, 2019, 45(4):279. [122]LIN Dantian, WANG Chengyong, HUANG Xin, et al. Cryogenic Drilling of Aluminum-based Printed Circuit Boards:a Review and Analysis[J]. Machining Science and Technology, 2019, 24(2):321-339. [123]刘建. 低温微量润滑高速铣削SiCp/Al复合材料刀具磨损机理研究[D].哈尔滨:哈尔滨理工大学,2020. LIU Jian. Cryogenic Minimum Quantity Lubrication High Speed Milling SiCp/Al Composite Study on the Mechanism of Tool Wear[D]. Harbin:Harbin University of Science and Technology, 2020. [124]田佳. 低温微量润滑切削环境空气质量研究[D]. 南京:南京航空航天大学,2009. TIAN Jia. An Investigation of Ambient Air Quality in Cutting Process with Cryogenic Minimum Quantity Lubrication[D].Nanjing:Nanjing University of Aeronautics and Astronautics ,2009. [125]GUPTA M K, SONG Q, LIU Z, et al. Ecological, Economical and Technological Perspectives Based Sustainability Assessment in Hybrid-Cooling Assisted Machining of Ti-6Al-4V Alloy[J]. Sustainable Materials and Technologies, 2020, 26:e00218. |
[1] | 张金阳, 许伟春, 王笑含, 江小辉, 高山. 铣削工艺优化对镍基高温合金加工残余应力分布影响研究[J]. 中国机械工程, 2024, 35(04): 624-635. |
[2] | 张宇, 王德祥, 郭峰, 栗心明, . 球形纳米颗粒在镍基合金纳米流体微量润滑磨削界面摩擦学机制的分子动力学研究[J]. 中国机械工程, 2024, 35(03): 445-456. |
[3] | 张立峰, 张晓光. 微量润滑变角度高速铣削碳纤维增强复合材料的加工性能与材料去除机理[J]. 中国机械工程, 2023, 34(21): 2622-2628. |
[4] | 衣明东, 王建平, 李传浩 , 许崇海, . 双重润滑条件下的刀具切削特性研究[J]. 中国机械工程, 2022, 33(05): 615-622. |
[5] | 梁赐乐, 袁尧辉, 王成勇, 李伟秋, 杨简彰, 吴华艺. 微量润滑系统油雾调控及雾粒特性研究[J]. 中国机械工程, 2022, 33(05): 607-614. |
[6] | 王德祥, 赵齐亮, 张宇, 高腾, 江京亮, 刘国梁, 李长河, . 离子液体在微量润滑磨削界面的摩擦学机理研究[J]. 中国机械工程, 2022, 33(05): 560-568,606. |
[7] | 刘明政, 李长河, 曹华军, 张松, 陈云, 刘波, 张乃庆, 周宗明. 低温微量润滑加工技术研究进展与应用[J]. 中国机械工程, 2022, 33(05): 529-550. |
[8] | 刘枭, 邓文君, 陈海涛, 张保玉. 低温切削7075铝合金鳞刺形成规律及抑制措施[J]. 中国机械工程, 2022, 33(03): 261-269. |
[9] | 孔晓瑶1,2;袁松梅1,2;朱光远1,2;张文杰1,2. 微量润滑系统参数对雾化特性的影响[J]. 中国机械工程, 2021, 32(05): 579-586. |
[10] | 张高峰;李景焘;王志刚;陈文新. 低温冷风纳米粒子微量润滑磨削轴承钢试验研究[J]. 中国机械工程, 2019, 30(19): 2342-2348. |
[11] | 林建斌;吕涛;黄水泉;胡晓冬;许雪峰. 基于静电微量润滑技术的磨削加工性能试验研究[J]. 中国机械工程, 2018, 29(23): 2783-2791,2798. |
[12] | 毛聪, 周鑫, 谭杨, 孙小丽. 基于微量润滑磨削的双喷口喷嘴雾化仿真分析[J]. 中国机械工程, 2015, 26(19): 2640-2645. |
[13] | 毕煌圣, 熊良山, 黄若峰, 毛宽民. 基于有限元仿真结果和车削实验的刀屑平均摩擦因数估计方法[J]. 中国机械工程, 2014, 25(8): 1006-1009,1016. |
[14] | 毛聪, 邹洪富, 黄勇, 周志雄. 微量润滑平面磨削接触区换热机理的研究[J]. 中国机械工程, 2014, 25(6): 826-831. |
[15] | 李文举, 王彪, 刘永姜, 刘国志, . 1Cr18Ni9Ti不锈钢车削加工中油膜附水滴冷却润滑技术研究[J]. 中国机械工程, 2014, 25(6): 747-750. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||