Most Read articles

    Published in last 1 year |  In last 2 years |  In last 3 years |  All

    In last 3 years
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Research Review of Error Compensation Technology for Ultra-precision Machining
    CHEN Qidi, HU Xiaolong, LIN Min, SUN Xiaoxia, ZHANG Tao, ZHOU Zhixiong
    China Mechanical Engineering    2023, 34 (03): 253-268.   DOI: 10.3969/j.issn.1004-132X.2023.03.001
    Abstract2236)      PDF(pc) (8557KB)(1316)       Save
     Ultra-precision machining technology was a key technology in high-end manufacturing fields. At present, ultra-precision machining has entered the nano scale. Mastering the key technology of ultra-precision machining error control, ensuring and improving the machining accuracy of CNC machine tools, become a hot research point to improve the machining and manufacturing levels. This paper systematically summarized the research status and development trend of ultra-precision machining error compensation technology, and focused on the geometric errors, force induced errors, thermal induced errors and their compensation methods, which had the greatest impact on ultra-precision machining. Then, a series of problems of ultra-precision machining in geometric error separation, cutting force, thermal induced error measurement and compensation were deeply discussed, and it is further pointed out that the ultra-precision machining error compensation technology should also pay attention to the development direction of high efficiency, high precision, generalization, modularization, intelligence and flexibility.
    Reference | Related Articles | Metrics | Comments0
    Industrial Engineering and Lean Management for Smart Manufacturing
    QI Ershi, HUO Yanfang, LIU Hongwei
    China Mechanical Engineering    2022, 33 (21): 2521-2530.   DOI: 10.3969/j.issn.1004-132X.2022.21.001
    Abstract1980)      PDF(pc) (4622KB)(1446)       Save
    This paper reviewed the development routes of developed countries such as the United States, Japan, and Germany since the emergence of industrial engineering for more than 100 years, discussed the regular characteristics of enterprise management innovation, and drew the conclusion that smart manufacturing also needed IE/LM to provide management support. According to the smart manufacturing project cycle, the functions of IE/LM in smart manufacturing engineering were analyzed from the perspectives of basic preparation, scheme selection, and integration development. The framework of lean smart management system for smart manufacturing transformation of Chinese enterprises was given, and the improvement ideas and methods of smart-lean integration were explained based on a case. Finally, some key technologies of smart manufacturing management facing transformation and upgrading of Chinese enterprises were presented based on the actual needs of China. 
    Reference | Related Articles | Metrics | Comments0
    A High-dimensional Uncertainty Propagation Method Based on Supervised Dimension Reduction and Adaptive Kriging Modeling
    SONG Zhouzhou1, 2, ZHANG Hanyu1, 2, LIU Zhao3, ZHU Ping1, 2
    China Mechanical Engineering    2024, 35 (05): 762-769,810.   DOI: 10.3969/j.issn.1004-132X.2024.05.001
    Abstract1387)      PDF(pc) (3068KB)(221)       Save
     High-dimensional uncertainty propagation currently faced the curse of dimensionality, which made it difficult to utilize the limited sampling resources to obtain high-precision uncertainty analysis results. To address this problem, a high-dimensional uncertainty propagation method was proposed based on supervised dimension reduction and adaptive Kriging modeling. The high-dimensional inputs were projected into the low-dimensional space using the improved sufficient dimension reduction method, and the dimensionality of the low-dimensional space was determined by using the Ladle estimator. The projection matrix was embedded into the Kriging kernel function to reduce the number of hyperparameters to be estimated and improve the modeling accuracy and efficiency. Finally, the leave-one-out cross-validation error of the projection matrix was innovatively defined and the corresponding Kriging adaptive sampling strategy was proposed, which might effectively avoid large fluctuations of model accuracy in the adaptive sampling processes. The results of numerical and engineering examples show that, compared with the existing methods, the proposed method may obtain high-precision uncertainty propagation results with fewer sample points, which may provide references for the uncertainty analysis and design of complex structures. 
    Reference | Related Articles | Metrics | Comments0
    Development Status and Prospect of Key Rail Grinding Equipment and Technology of Grinding Stone
    ZHANG Wulin, FANXiaoqiang, ZHU Minhao, DUAN Haitao
    China Mechanical Engineering    2022, 33 (19): 2269-2287.   DOI: 10.3969/j.issn.1004-132X.2022.19.001
    Abstract1210)      PDF(pc) (17216KB)(756)       Save
     The rail grinding strategies and techniques were reviewed, and the key equipment of the grinding methods using grinding wheels(active grinding and high-speed passive grinding)and the milling and grinding compound process were summarized. Meanwhile, the research status of rail grinding stone(grinding wheel, equipped with rail grinding train and used for cutting tools)were reviewed from ingredients, forming processes, structural design and grinding performance evaluation criterions, etc. It was concluded that the fine formula design, scientific evaluation criterions, etc. were the main challenges for the development of high-performance grinding stones. Finally, it was pointed out that the greenization, standardization, and intelligence were the important directions for future development of grinding stone technology. 
    Reference | Related Articles | Metrics | Comments0
    A Sequential Simulation Method for Dynamic Uncertainty Analysis of Rigid-flexible Coupling Systems under Interval Process Excitations
    LIU Yanhao, NI Bingyu, TIAN Wanyi, JIANG Chao
    China Mechanical Engineering    2024, 35 (05): 770-783.   DOI: 10.3969/j.issn.1004-132X.2024.05.002
    Abstract1146)      PDF(pc) (9281KB)(125)       Save
    For the dynamic problem of rigid-flexible coupling systems under dynamic uncertain excitations, an interval process model-based sequential simulation method was proposed for uncertainty analysis, which aimed to obtain the upper and lower bounds of the system dynamic responses such as structural vibrations and mechanism kinematics, by sequential sampling of the interval process and the rigid-flexible coupling dynamics simulations. The construction and numerical solution of the dynamic equation of the rigid-flexible coupling systems with central rigid body and flexible beam were introduced. Aiming at the dynamic analysis of rigid-flexible coupling systems under uncertain dynamic excitations, the interval process model and the interval K-L expansion were introduced to quantify and represent the dynamic uncertainty efficiently, and a sequential simulation method was proposed to solve the upper and lower bounds of the dynamic responses of the system mechanism motions and structural vibrations. The method used a sequential simulation strategy to identify the interval process parameter sample sets that contributed to the upper or lower bounds of dynamic responses in the cur rent simulation sequence, and served as the local encrypted sampling center in the next simulation sequence, which might effectively avoid the inefficient convergence problem caused by excessive invalid sampling simulations when calculating the upper and lower bounds of dynamic response in direct Monte Carlo simulation. Finally, three examples were given to verify the effectiveness of the proposed method. The results show that the sequential simulation method has better computational efficiency and accuracy than that of the direct Monte Carlo simulation method for solving the upper and lower bounds of the rigid-flexible coupling systems large overall motions and vibration responses.
    Reference | Related Articles | Metrics | Comments0
    Heat Exchange Micro-tube Vibration Analysis and Reliability Evaluation Methods for Diaphragm Micro-channel Pre-coolers
    WANG Zheng, MA Tongling, WANG Bowen, GU Meidan
    China Mechanical Engineering    2024, 35 (05): 869-876,885.   DOI: 10.3969/j.issn.1004-132X.2024.05.012
    Abstract1080)      PDF(pc) (3506KB)(66)       Save
    For the problem of heat exchange micro-tube vibration reliability of diaphragm micro-channel pre-coolers which was one of the key components of pre-cooled air breathing combined cycle engines, the method and mathmatical model for calculating the natural vibration characteristics of heat exchange micro-tubes were developed, and the vibration modes and their mechanism of heat exchange micro-tube with the action of high speed air flow were studied. Then, the vibration modes including the vortex shedding excitation vibration, the turbulent buffeting vibration and the elastic excitation vibration were taken into account, and the reliability evalutating model of pre-coolers with heat exchange micro-tube vibration failure mode was derived. The pre-cooler heat exchange micro-tube vibration reliability of change rules were revealed. The results show that the natural vibration frequency of heat exchange micro-tube is affected by the parameters including outside diameter, pipe wall thickness, adjacent support plate spacing, material properties and so on, and the vibration modes of heat exchange micro-tube have the characteristics of sine function. Three important vibration modes including the vortex shedding excitation vibration, the turbulent buffeting vibration and the elastic excitation vibration those may happen in the heat exchange micro tubes of pre-cooler with the action of high speed air flow. And with the increasing of flow velocity of cooled working fluid, the heat exchange micro-tube vibration reliability of pre-coolers decreases firstly, and then increases and approaches a certain value. In order to avoid the resonance of heat exchange micro tubes, the structural parameters may be designed rationally with the operating profile and the flow and heat transfer characteristics may be also taken into account.
    Reference | Related Articles | Metrics | Comments0
    Digital Transformation Mode and Strategy of SMEs in China
    WANG Baicun, ZHU Kailing, XUE Yuan, BAI Jie, ZANG Jiyuan, XIE Haibo, YANG Huayong,
    China Mechanical Engineering    2023, 34 (14): 1756-1763.   DOI: 10.3969/j.issn.1004-132X.2023.14.013
    Abstract1079)      PDF(pc) (5220KB)(749)       Save
    Promoting the digital transformation of SMEs was of great significance for Chinas manufacturing industries to improve quality and increase efficiency. SMEs were facing problems in digital transformation, such as high cost, fuzzy path, talent shortage, and lacking analytical framework and reference paradigm for digital transformation. The key factors to achieve digital transformation were clarified by building an analytical framework for SMEs digital transformation herein. Through case studies, 4 basic path models of digital transformation of SMEs were summarized and proposed. Based on the above researches, targeted suggestions were proposed for SMEs digital transformation in China, so as to promote the digital and intelligent development of SMEs.
    Reference | Related Articles | Metrics | Comments0
    Review on Management at Mechanical Design and Manufacturing Discipline of NSFC in 2022
    YE Xin, ZHU Mingliang, HUANG Zhiquan,
    China Mechanical Engineering    2023, 34 (04): 379-386.   DOI: 10.3969/j.issn.1004-132X.2023.04.001
    Abstract1013)      PDF(pc) (2658KB)(714)       Save
    The applications, evaluations and funding of projects at mechanical design and manufacturing discipline (division Ⅱ of engineering science) of the NSFC in 2022, as well as the research progresses and achievements of the executing and finished projects were reviewed. Specific measures of mechanical design and manufacturing discipline were illustrated, such as the reform of scientific fund, talent cultivation and future research. Finally, a short prospect of the work in 2023 was introduced. 
    Reference | Related Articles | Metrics | Comments0
    Modeling of Material Removal Depth in ABFW Polishing Based on Modified Preston Equation
    ZHANG Junfeng, SHI Yaoyao, LIN Xiaojun, WU Xiaojun
    China Mechanical Engineering    2022, 33 (22): 2711-2716.   DOI: 10.3969/j.issn.1004-132X.2022.22.008
    Abstract996)      PDF(pc) (4289KB)(395)       Save
    Due to the elasticity of ABFW, the actual material removal depth was not consistent with the nominal polishing depth, which directly affected the control of polishing efficiency and surface quality. Based on the Hertz elastic contact theory, the distribution function of polishing pressure and cutting speed in the contact area was established, and the material removal depth model was established according to the modified Preston equation. Based on this, the key processing parameters that affected the material removal depthi.e、abrasive particle size, spindle speed, ABFW deformation and feed rate were determined. Then, the distribution of material removal depth in contact areas and the influences of key polishing process parameters on the material removal depth were obtained. Finally, the correctness of the model and the influence law were verified by simulation and polishing experiments, the results show that the model may better predict the material removal depth of ABFW polishing. 
    Reference | Related Articles | Metrics | Comments0
    Rebound Law and Precision Compensation Method of Three-dimensional Laser Cutting of High Strength Steel Hot Stamping Structural Parts
    LI Shougang, LIU Peng, LIU Xiang, HU Zhili,
    China Mechanical Engineering    2022, 33 (22): 2741-2747.   DOI: 10.3969/j.issn.1004-132X.2022.22.012
    Abstract959)      PDF(pc) (7408KB)(226)       Save
    In order to reduce the influences of springback defects on the cutting accuracy in the three-dimensional laser cutting of high-strength steel body structures, the rebound characteristics was studied by applying three-dimensional laser cutting of hot stamped high-strength steel body components.For high-strength steel car body structure A-pillar, hot stamping and laser cutting finite element models were established respectively by the finite element simulation software AUTOFORM and ABAQUS respectively. The rebound value distribution diagram was obtained through numerical simulation, and the rebound law of the contour of the body structures after cutting was found. The optimal cutting contour was determined according to the direct compensation method based on rebound prediction. The compensation method was validated by cutting the A-pillar semi-finished products. The results show that the contour may be controlled within the tolerance range, the contour errors are decreased by about 28.5%, and the profile rebound is decreased by about 38.3%,by the proposed compensation method,which verify the effectiveness of the compensation method.
    Reference | Related Articles | Metrics | Comments0
    High Dimensional Multioutput Uncertainty Propagation Method via Active Learning and Bayesian Deep Neural Network
    LIU Jingfei1, JIANG Chao2, NI Bingyu2, WANG Zongtai3
    China Mechanical Engineering    2024, 35 (05): 792-801.   DOI: 10.3969/j.issn.1004-132X.2024.05.004
    Abstract945)      PDF(pc) (4472KB)(110)       Save
    An uncertainty propagation method was proposed based on active learning and BDNN for solving the high dimensional multioutput problems existed in practical engineering. Since the multiple output responses corresponded to the same input variables, the efficient one-step sampling was implemented and the initial training dataset was established. BDNN was utilized for initially establishing the surrogate model for high dimensional multioutput problem. Because BDNN might provide the uncertainty estimation for multiple predictive output responses simultaneously, an active sampling strategy was proposed for high dimensional multioutput problem. Then, Monte Carlo sampling(MCS) method and Gaussian mixture model were combined for computing the joint probability density function of multiple output responses. The results show that proposed method may avoid the repeated computing processes for different output responses individually, and make full use of the internal relationship among multiple output responses for implementing active learning. Therefore, the efficiency for solving high-dimensional multioutput problems may be improved to some extent. Finally, several numerical examples were utilized to validate the efficiency of the proposed method. 
    Reference | Related Articles | Metrics | Comments0
    Research on Accelerated Life Test Method of Harmonic Reducers
    WANG Qiao, DU Xuesong, SONG Chaosheng, ZHU Caichao, SUN Jianquan, LIAO Delin
    China Mechanical Engineering    2022, 33 (19): 2317-2324.   DOI: 10.3969/j.issn.1004-132X.2022.19.005
    Abstract939)      PDF(pc) (5879KB)(662)       Save
    At present, there was an urgent need for an accelerated life test method of harmonic reducer in engineering to replace the full life test in order to reduce the test cycles and costs. Based on the principles of accelerated life test, a constant stress accelerated life test program  was proposed based on the failure characteristics of the harmonic reducer. The flexible wheel that was most likely to fail in the harmonic reducers was taken as the object, and the definite failure judgment, acceleration stress, acceleration factor, method of accelerating model were pointed out. In the small sample test data processing, a more accurate Weibull distribution parameter estimation was obtained by using the maximum likelihood method and Markov Monte Carlo method. The experimental results of the prototype show that the scheme may effectively describe the life of the harmonic reducers. The reliability evaluation standard of the basic rated life is 62% higher than that of the evaluation standard of the median life. The life index of the harmonic reducers was effectively evaluated. The research results have certain engineering application values. 
    Reference | Related Articles | Metrics | Comments0
    Research on Reliability-based Design Optimization of Larger-caliber Artillery Ammunition Coordinator Mechanisms
    YAN Lijun1, LI Guangqi1, LIU Qin2, GAO Jingzhou1, SONG Huabin1, LUO Xiaoping1
    China Mechanical Engineering    2024, 35 (05): 877-885.   DOI: 10.3969/j.issn.1004-132X.2024.05.013
    Abstract927)      PDF(pc) (3107KB)(91)       Save
    In order to improve the coordination engagement efficiency while maintaining the high reliability of the coordination engagement action, a reliability optimization design of ammunition coordinators was carried out. Considering the main geometric dimensions, manufacturing errors, elastic deformation of important components and other factors, a parametric rigid-flexible coupled dynamic model of ammunition coordinators was established, the failures of the coordination engagement action for coordinators were reproduced through the parametric dynamics analysis, then the performance function corresponding to the coordination failure mode and the reliability optimization design model of the coordinators were built. In order to improve the efficiency and accuracy of solving the coordinator reliability optimization design model, a new Kriging model adaptive update strategy was constructed and combined with SQP method and performance measure approach(PMA)/ reliability index approach(RIA), and the coordinator mechanism reliability optimization design method was proposed. The results show that the coordination efficiency of the coordinators is greatly improved under the conditions that the coordination engagement reliability meets the requirements, and the validity and engineering value of the proposed reliability optimization design method are also verified.
    Reference | Related Articles | Metrics | Comments0
    Research on Backlash Elimination Method of Dual-motor Precision Transmission Mechanisms
    ZHENG Jieji, CHEN Lingyu, FAN Dapeng, XIE Xin
    China Mechanical Engineering    2022, 33 (22): 2684-2692.   DOI: 10.3969/j.issn.1004-132X.2022.22.005
    Abstract915)      PDF(pc) (6537KB)(609)       Save
    Aiming at the problems of large speed fluctuation and impact caused by the gaps between the two transmission chains of the dual-motor precision transmission mechanisms, the method of eliminating the gaps of the system was studied. First, a mechanism dynamics model including the meshing clearances between the output gear of the planetary reducer and the large ring gear was established. Through the model simulation, the influences of the gap size on the system characteristics were analyzed. Then, a compound anti-backlash method was proposed combining dynamic bias torque based on speed command and cross-coupling synchronous control based on differential negative feedback. An experimental device for dual-motor precision transmission mechanisms was built, and the verification experiments of the anti-backlash method were carried out. The experimental results show that in the case of closed-loop speed, the proposed compound anti-backlash method may ensure the complete elimination of the system gaps, and may improve the system speed tracking accuracy by 73.38%, and the shock amplitude in the start-up phase may be attenuated by 76.35%. The research results lay a certain foundation for the research of the high-precision control method of the double-motor precision transmission mechanisms, and provide a reference scheme for the elimination of the gaps in the gear transmission systems. 
    Reference | Related Articles | Metrics | Comments0
    Research Status and Development of Hybrid Additive Manufacturing Technology
    XIONG Xiaochen , QIN Xunpeng , HUA Lin , HU Zeqi , JI Feilong ,
    China Mechanical Engineering    2022, 33 (17): 2087-2097.   DOI: 10.3969/j.issn.1004-132X.2022.17.010
    Abstract891)      PDF(pc) (13696KB)(330)       Save
    The poor forming accuracy and performance restricted the development and applications of metallic additive manufacturing technology. Hybrid additive manufacturing had a significant effectiveness on solving the problem. The classification and main categories of hybrid additive manufacturing technology were highly generalized herein. The research progresses and technical developments of additive and subtractive hybrid manufacturing in the control of the part forming accuracy and surface quality were briefly summarized. The technology categories, forming principles, manufacturing characteristics and key problems of additive and equivalent hybrid manufacturing were emphatically commented, as well as the research status and main conclusions of additive and equivalent hybrid manufacturing on the control of microstructure, stress state and macro-performance of the parts. The acting mechanism of three special auxiliary energy fields, namely ultrasonic, electromagnetic and laser, on the flow, crystallization and solid-state phase transition of additive molten pool, and the evolution law of microstructure state, mechanical properties and forming accuracy of additive layer under the action of special energy fields were systematically introduced. Finally, the development trends of hybrid additive manufacturing technology were prospected in the future. 
    Reference | Related Articles | Metrics | Comments0
    Navigation Trajectory Prediction Method of Inland Ships Based on Multi-model Fusion
    ZHANG Yang, GAO Shu, HE Wei, CAI Jing
    China Mechanical Engineering    2022, 33 (10): 1142-1152.   DOI: 10.3969/j.issn.1004-132X.2022.10.002
    Abstract881)      PDF(pc) (2807KB)(506)       Save
     Inland waterway navigation was an important part of the modern comprehensive transportation systems. The real-time and high-precision ship trajectory prediction method was helpful to effectively avoid water traffic accidents and enhance the ability of automation and intelligent supervision. Aiming at the problems that the accuracy of the existing inland ship trajectory prediction was not high, in order to improve the short-term prediction accuracy of ship trajectory, comprehensively using the recent AIS (automatic identification system) data and historical AIS data of the ships, and based on the relationship among trajectory and speed, course, and the characteristics of inland waterway, the temporal convolutional network model for speed and course prediction, ship trajectory dynamics equation model and adaptive double-hidden layer RBF network were constructed. The ship trajectory prediction method based on multi-model fusion was proposed. Experimental results show that the proposed method has obvious improvement in trajectory prediction accuracy and may meet the real-time requirements. 
    Reference | Related Articles | Metrics | Comments0
    A Collision Detection Method of Heavy-duty CNC Machine Tools Based on Digital Twin
    JIANG Xuemei, YUAN Zihang, LOU Ping, ZHANG Xiaomei, YAN Junwei, HU Jiwei,
    China Mechanical Engineering    2022, 33 (22): 2647-2654,2663.   DOI: 10.3969/j.issn.1004-132X.2022.22.001
    Abstract866)      PDF(pc) (10716KB)(301)       Save
    At present, the collision detection of CNCMTs usually used the basic simulation function of the CNC system to detect machining G codes, which only considered whether there were collisions between the tool and the ideal workbench, or the tool and fixtures on the tool path during the processes. It was difficult to meet the actual dynamic processing environments, clamping mode and fixture change of open heavy-duty machine tools. So the digital twin was introduced into the collision detection of open heavy-duty CNCMTs, and a perception-evolutionary prediction-feedback collision detection framework was constructed. By constructing digital twin of CNCMTs and dynamically sensing machining elements such as workpieces ,fixtures and cutting tools, the evolution of the digital twin should be driven by perception data, and the potential interference phenomenon would be predicted in the machining processes. Thus, the efficiency of the CNCMTs was improved, and the potential harm was avoided. The method was applied to the collision detection of heavy-duty CNC gantry boring and milling machine ZK5520, and the effectiveness and feasibility of the proposed method were proved.
    Reference | Related Articles | Metrics | Comments0
    Research on Interaction between Pedestrian and Automated Vehicle
    LYU Wei, GUO Fu , LIU Li, ZHANG Zeyu, WANG Tianbo
    China Mechanical Engineering    2023, 34 (05): 515-523.   DOI: 10.3969/j.issn.1004-132X.2023.05.002
    Abstract846)      PDF(pc) (3924KB)(895)       Save
    From the perspective of the pedestrian-vehicle-environment system, the effects of pedestrian safety facility, AVs yielding behavior, approaching direction and eHMI on pedestrian-AV interaction were investigated. Based on a cave automatic virtual environment(CAVE) simulation platform, the Unity 3D software was utilized to design and develop the AVs driving scenario. Thirty-eight volunteers were recruited for the pedestrian-AV interaction experiments. During the experiments, the participants decision time, decision results and subjective experience were recorded and further statistically analyzed with survival analysis. The results indicate that with the presence of an AV in the traffic, pedestrian safety facility, AVs yielding behavior and eHMI may significantly shorten pedestrians decision time, enhance their interactive experience and improve traffic efficiency. However, the influences of pedestrian safety facility on pedestrians crossing decision and behavior exist from the earlier stage of the crossing gap, compared with AVs yielding behavior. Meanwhile, the efficacy and clarity of a light band-based eHMI are somewhat limited for conveying AVs yielding intention.
    Reference | Related Articles | Metrics | Comments0
    Research and Applications of Condition Monitoring and Predictive Maintenance of Marine Diesel Engines
    CHEN Dongmei, ZHAO Siheng, WEI Chengyin, CHEN Yajie
    China Mechanical Engineering    2022, 33 (10): 1162-1168.   DOI: 10.3969/j.issn.1004-132X.2022.10.004
    Abstract834)      PDF(pc) (3080KB)(589)       Save
    Based on the four dimensions of thermal-pressure parameters, lubricant oil conditions, vibrations and cylinder pressures, data acquisition and feature extraction were carried out, and a method for diesel engine condition monitoring was proposed based on OCSVM anomaly detection algorithm and Fisher discriminant analysis.  The CUSUMMR was used for parameter trend detection and the D-S evidence theory and weight of evidence method were used for multi-source information fusion. the RUL(remaining useful life) of diesel engine lubricating oil was predicted by LSTM. The Paper solves the problems such as low early warning rate, poor adaptability of the model under diesel engine dynamic conditions. 
    Reference | Related Articles | Metrics | Comments0
    Key Geometric Error Analysis and Compensation Method of Five-axis CNC Machine Tools under Workpiece Feature Decomposition
    LU Chengwei, QIAN Bozeng, WANG Huimin, XIANG Sitong
    China Mechanical Engineering    2022, 33 (14): 1646-1653.   DOI: 10.3969/j.issn.1004-132X.2022.14.002
    Abstract830)      PDF(pc) (5495KB)(490)       Save
    A method was proposed to analyze and compensate the key geometric errors of five-axis CNC machine tools under workpiece feature decomposition. The complex workpieces were decomposed by the features, and the key geometric errors were identified and compensated through sensitivity analysis under the workpiece feature decomposition, so as to improve the overall machining accuracy of the workpieces. Taking a complex workpiece as an example, firstly, it was decomposed into four typical features: plane, inclined plane, cylinder and cone-frustum. Then, based on the sensitivity analysis, the key geometric errors corresponding to each typical feature were identified respectively. Finally, error compensation was made by feature decomposition. The experiments were carried out on an AC double-turntable five-axis machine tool, and the experimental results show that the sum proportion of key geometric error sensitivity coefficients obtained by identification are all more than 90%. After compensation, the machining accuracy of the four typical features of the workpiece is improved by 20%~30%. The results show that the proposed method may effectively identify the key geometric errors under different workpiece feature decomposition, thus improving the machining accuracy of complex workpieces.
    Reference | Related Articles | Metrics | Comments0
    Tribological Properties and Anti-friction Electrostatic Properties of CF/PEEK Composites
    PANG Xianjuan, YUE Shiwei, HUANG Suling, XIE Jinmeng, WANG Shuai, SONG Chenfei, YUE Yun, LIU Jian, LI Dong
    China Mechanical Engineering    2023, 34 (03): 277-286.   DOI: 10.3969/j.issn.1004-132X.2023.03.003
    Abstract826)      PDF(pc) (16300KB)(254)       Save
    CF/PEEK composites were prepared by vacuum hot pressing sintering technology. The thermal properties of the materials were tested by thermal conductivity analyzer and TG tester. Multifunctional friction and wear testing machine, 3D morphology profilometer, scanning electron microscope and friction electrometer were used to analyze the friction and wear properties and anti-friction electrostatic properties of the materials. The results show that with the increase of the forming temperature, the friction coefficient and wear rate of the materials decrease gradually. With the increase of CF contents, the friction coefficient, wear rate and friction electrostatic voltage decrease first and then increase. When the CF content is as 20%, the friction coefficient, wear rate and friction electrostatic voltage reach the lowest values, which are as 0.247, 5.6×10-6 mm/(N·m) and 3.3 V, respectively. Friction and electrostatic data show that the CF/PEEK materials prepared by this method have better friction properties and anti-electrostatic properties than that of commercial composites. The wear mechanism of CF/PEEK composites is mainly adhesive wear, accompanied by slight abrasive wear.
    Reference | Related Articles | Metrics | Comments0
    Research on Flexible Job-shop Scheduling Problems with Integrated Reinforcement Learning Algorithm
    ZHANG Kai, BI Li, JIAO Xiaogang
    China Mechanical Engineering    2023, 34 (02): 201-207.   DOI: 10.3969/j.issn.1004-132X.2023.02.010
    Abstract814)      PDF(pc) (4473KB)(592)       Save
    The flexible job-shop scheduling problems were transformed into a Markov decision process, and an algorithm D5QN integrated with 5 kinds of deep Q-network (DQN) optimizations was proposed. In the constructing of Markov process, a set of features was extracted to describe the states, and 3 sets of actions were designed by composite rules. The rewards were mapped by direct and indirect methods. The proposed algorithm was compared with the algorithms based on rules, meta-heuristic, and other reinforcement learning, which verifies the proposed algorithm may further decrease the calculating time, and have feasibility and effectiveness. 
    Reference | Related Articles | Metrics | Comments0
    Accelerated Test Verification and Evaluation of Storage Reliability Statistical Model of Polyurethane Sealing Elements for Electrical Connectors
    QIAN Ping, CHEN Chi, CHEN Wenhua, WU Shanqi, GUO Mingda
    China Mechanical Engineering    2024, 35 (05): 886-894.   DOI: 10.3969/j.issn.1004-132X.2024.05.014
    Abstract814)      PDF(pc) (4553KB)(58)       Save
     In order to address the issues of life evaluation for polyurethane sealing elements used in electrical connectors during prolonged storage conditions, the underlying mechanism behind cohesion failure and boundary failure that contributed to performance degradation of these seals was analyzed. The reliability statistical model of polyurethane sealing elements for electrical connectors, established at the mechanism level, was validated at a statistical level by comprehensively applying particle swarm optimization algorithm and regression analysis, AD test and goodness of fit test methods to the comprehensive stress accelerated degradation data of temperature and humidity on polyurethane sealing elements. The validity of the failure mechanism analysis was confirmed through SEM and EDS techniques. Ultimately, the developed model was employed to assess the reliable lifespan of polyurethane adhesive seals for electrical connectors under the  storage environment.
    Reference | Related Articles | Metrics | Comments0
    Robot Welding Trajectory Planning and High Frequency Control for Curved Seams
    WU Chaoqun, ZHAO Song, LEI Ting
    China Mechanical Engineering    2023, 34 (14): 1723-1728.   DOI: 10.3969/j.issn.1004-132X.2023.14.009
    Abstract805)      PDF(pc) (6070KB)(432)       Save
    In a robotic real-time seam tracking system, the trajectory planning and control delay affected the tracking accuracy and welding quality. To solve this problem, a piecewise real-time trajectory planning and control method for curved seams was proposed by combining B-spline curve interpolation algorithm and EGM module. Firstly, the trajectory was segmented according to the principle of optimal interpolation time. Secondly, three times non-uniform B-spline was used to interpolate each trajectory to obtain the interpolation points. Finally, the high-frequency controller of the robot was designed. The interpolation points were sent to the robot by EGM module in a cycle of 4 ms to guide the robot movements. The experimental results show that this method may complete the planning of sine curve weld and guide the robot welding in 100 ms, and the tracking errors were controlled within ±0.2 mm, which realizes the rapid trajectory planning and high-frequency control.
    Reference | Related Articles | Metrics | Comments0
    Study on Mechanics Properties and Numerical Convergence of Gyroid Cellular Structures
    JIANG Chuangyu, ZHANG Baoqiang, CHEN Yun, WANG Cunfu, LUO Huageng, HU Jiexiang, CAO Longchao
    China Mechanical Engineering    2022, 33 (23): 2790-28000.   DOI: 10.3969/j.issn.1004-132X.2022.23.003
    Abstract800)      PDF(pc) (14171KB)(189)       Save
    In order to reveal the corresponding relationship between TPMS structure design and mechanics property parameters, the mechanics properties of Gyroid cellular structure(GCS) with different arrangements and the numerical convergence of meshes with different parameters were studied. GCS specimens with fixed volume fraction and unit size were designed. Based on the voxelization model with changing mesh parameters, the convergence analyses of GCS were conducted by finite element method. The correctness of the simulation was verified by tensile test of specimen. Finally, the mechanics properties of the GCS in different arrangements were studied in tensile and bending conditions. Results show that the relative errors of tensile strength and load limit between simulation and experiment are all less than 1.5%. Based on the voxelization method, the number of elements during convergence  may be significantly reduced by adjusting the Jacobian parameters. Quantitative analyses of mechanics properties of variable thickness GCS were conducted. In tensile tests, for 4×4×4 structures, the maximum variation of equivalent elastic modulus along the thickness direction may reach 14.41%. In bending tests, for 20×4×4 structures, the maximum difference of equivalent elastic modulus is as 21.25%. 
    Reference | Related Articles | Metrics | Comments0
    Construction Method of Virtual-real Drive Systems for Robots in Digital Twin Workshops
    LIU Huailan, ZHAO Wenjie, LI Shizhuang, YUE Peng, MA Baorui
    China Mechanical Engineering    2022, 33 (21): 2623-2632.   DOI: 10.3969/j.issn.1004-132X.2022.21.011
    Abstract793)      PDF(pc) (2935KB)(669)       Save
     For the current problems for complex modeling and long development cycle of virtual entities such as industrial robots in digital twin workshop construction, a modular construction method of virtual-real drive systems for industrial robots in digital twin workshops was proposed, which divided the virtual-real drive systems into an interaction layer for setting model parameters and a control layer for designing configurations according to functional requirements, and then abstracted the physical industrial robots, etc. into a simulation model from coupling single functional atomic model. The modular and hierarchical approach to building virtual-reality drive systems may quickly and effectively realize the modeling of digital twin virtual entities such as industrial robots, as well as the simulation of industrial robots operating in virtual space and the simultaneous operation of virtual-reality.
    Reference | Related Articles | Metrics | Comments0
    Fault Diagnosis Method of Rolling Bearings Based on Simulation Data Drive and Domain Adaptation
    DONG Shaojiang, ZHU Peng, ZHU Sunke, LIU Lanhui, XING Bin, HU Xiaolin
    China Mechanical Engineering    2023, 34 (06): 694-702.   DOI: 10.3969/j.issn.1004-132X.2023.06.008
    Abstract793)      PDF(pc) (6394KB)(567)       Save
    To solve the problem that it was difficult to obtain a large number of high-quality rolling bearing fault data in the actual industrial environment, and the generalization performance of the intelligent diagnosis model was poor, a fault diagnosis method was proposed based on simulation data driven and domain adaptation. Firstly, a physical model was established to obtain rich simulation data, which simulated different failure forms of bearings according to bearing parameters and corresponding operating conditions. Secondly, the transfer learning method was used to solve the problem of inconsistent data feature distributions between simulation and actual fault data. The residual channel attention mechanism network was used to extract the transfer fault features of different domains, and the adaptive operation of different domains in the network training processes was carried out through the condition maximum mean discrepancy metric criterion, which taken into account the conditional distribution discrepancies between different domains. Finally, different transfer model tests were carried out on the bearing data sets damaged by man-made damage and accelerated life test. The results show that the method proposed may obtain better recognition accuracy when the target domain contains a small number of labels. 
    Reference | Related Articles | Metrics | Comments0
    Time-series Correlation Prediction of Quality in Process Production Processes Based on Deep TCN and Transfer Learning
    YIN Yanchao, SHI Chengjuan, ZOU Chaopu, LIU Xiaobao
    China Mechanical Engineering    2023, 34 (14): 1659-1671.   DOI: 10.3969/j.issn.1004-132X.2023.14.003
    Abstract791)      PDF(pc) (13154KB)(206)       Save
     To address the problems which were difficult to accurately predict production quality due to the temporal coupling of multiple processing parameters in process production, a fast and efficient production quality prediction method was proposed based on deep TCN networks and migration learning. With a sequence-to-sequence learning structure, a deep TCN and a temporal attention mechanism formed the encoding component for extracting key temporal features from multiple sources, while a residual long short term memory network formed the decoding component for simultaneous extraction of quality temporal information, and migration learning was introduced to address the adaptability of the prediction model to online production quality prediction. The experiments show that the proposed method has significant advantages in prediction accuracy and stability, and has high prediction accuracy and computational efficiency in predicting small sample data.
    Reference | Related Articles | Metrics | Comments0
    Human Factor Engineering for Human-Cyber-Physical System Collaboration in Intelligent Manufacturing
    YANG Xiaonan, FANG Haonan, LI Jianguo, XUE Qing
    China Mechanical Engineering    2023, 34 (14): 1710-1722,1740.   DOI: 10.3969/j.issn.1004-132X.2023.14.008
    Abstract786)      PDF(pc) (5740KB)(535)       Save
    The theoretical system of intelligent manufacturing for HCPS confirmed the central position of human in the intelligent manufacturing system. Starting from the demand of human-machine collaboration in the intelligent manufacturing system, the emphases of human factors in HCIM were discussed from three levels such as behavior, intention, and cognition, based on the theory of gulf. Focusing on virtual-real fusion scenarios, multimodal human-machine interaction, cognitive quantification and other methods, the importance of human factor engineering in promoting the integration of human-computer intelligence was expounded. Finally, research direction and development suggestions of human-centered intelligent manufacturing from the implementation of HCPS intelligent manufacturing systems were put forward.
    Reference | Related Articles | Metrics | Comments0
    Energy Consumption Prediction Method for Industrial Robots
    TUO Junbo, PENG Qiuyuan, ZHANG Xianmin, LI Congbo
    China Mechanical Engineering    2022, 33 (22): 2727-2732,2740.   DOI: 10.3969/j.issn.1004-132X.2022.22.010
    Abstract777)      PDF(pc) (2858KB)(834)       Save
    Aiming at the defects of complex models, cumbersome operation and high cost of traditional energy consumption prediction methods for industrial robots, a meta-action-based energy consumption prediction method for industrial robots was proposed from the perspective of motion trajectory and action mode of end-effector. First, the meta-actions and energy consumption characteristics of static operations and dynamic operations of industrial robots were analyzed in the first place, and the energy consumption function of static meta-action and dynamic meta-action like axial motion and rotation et al, were built. Then, the motions of the target processes were disassembled based on the proposed meta-action library and the energy sonsumption calculation model of each meta-motion was built. Finally, energy consumption of industrial robots at target processes was realized by combining the energy consumption functions and calculation models. By applying the proposed method, the energy consumption prediction may be realized by disassembling operation processes as long as the energy consumption function of each meta-action was established by measuring meta-action power in advance, so the method has broad application prospects.
    Reference | Related Articles | Metrics | Comments0
    Research Progresses on Surface Integrity of Bearing Grooves
    WANG Dongfeng, YUAN Julong, WANG Yanshuang, CHENG Yongjie, LYU Binghai
    China Mechanical Engineering    2022, 33 (18): 2143-2160.   DOI: 10.3969/j.issn.1004-132X.2022.18.001
    Abstract776)      PDF(pc) (5702KB)(805)       Save
    Improving the surface integrity of bearing grooves was an important solution to solve technical problems such as low reliability life, high friction power consumption and unstable vibrations and noises of bearings. On the basis of comprehensive research of generalized surface integrity by domestic and foreign scholars, the definition and connotation of characteristic parameters of bearing groove surface integrity were proposed, and the significance of characteristic parameters and the influence mechanism on bearing performance were expounded. The influences of different processing processes such as forging, turning, heat treatment, grinding and ultra-precision on the surface characteristic parameters of bearing raceways were analyzed in details, and the corresponding control measures were given. The new technologies, new processes, and new methods for improving surface integrity were briefly introduced. Finally, the summary and prospect of improving the surface integrity of bearing grooves were made to provide some references for improving the contact fatigue lifes of bearings.
    Reference | Related Articles | Metrics | Comments0
    An Estimation Method of Failure Probability Function Based on AK-MCS-K
    SONG Haizheng1, 2, ZHOU Changcong1, 2, LI Lei1, 2, LIN Huagang1, 2, YUE Zhufeng1, 2
    China Mechanical Engineering    2024, 35 (05): 784-791.   DOI: 10.3969/j.issn.1004-132X.2024.05.003
    Abstract774)      PDF(pc) (4039KB)(103)       Save
    An efficient method for solving the failure probability function was proposed to address the difficulties of solving the failure probability function in reliability optimization design, such as complexity and large amount of computation. The basic idea of the proposed method was to utilize the adaptive Kriging method to construct a local surrogate model of the full space of input variables at the failure boundary. The local surrogate model was then combined with the Monte Carlo simulation method to calculate the failure probability of the structures under the specified distribution parameter samples. The functional relationship between the sample points of the distribution parameters and the structural failure probability was then fitted by the Kriging method. Finalization of the implicit function of the failure probability function expressed in terms of the Kriging model. In order to test the accuracy and efficiency of the proposed method, two examples were given to compare the computational results of the proposed method with those of the existing methods for solving failure probability functions. The results of examples show that the proposed method is suitable for solving complicated functional function problems and significantly reduces the amount of computation while satisfying the accuracy requirements.
    Reference | Related Articles | Metrics | Comments0
    A Wafer Cycle Processing Time Prediction Method Incorporating Double Attention Mechanism and Parallel GRU
    DAI Jiabin, ZHANG Jie, WU Lihui
    China Mechanical Engineering    2023, 34 (14): 1640-1646.   DOI: 10.3969/j.issn.1004-132X.2023.14.001
    Abstract763)      PDF(pc) (4600KB)(347)       Save
    Low efficiency and low prediction accuracy were caused by the large scale of production feature data, complex correlation among features, and strong correlation of feature samples in wafer fabrication processes, so a wafer processing cycle prediction method integrating double attention mechanism and parallel GRU was proposed. Firstly, Relief-F algorithm was used to reduce the dimensionality of production feature data. Secondly, a fuzzy C-mean algorithm was used to cluster the process similarity of data samples and design a parallel GRU network to explore the strong correlation among wafer feature samples. Finally, a double attention mechanism was designed to learn the complex correlation information within key features and among features and processing cycle. The experimental results show that the proposed method may effectively reduce the prediction training time and improve the prediction accuracy.
    Reference | Related Articles | Metrics | Comments0
    Hybrid Flow Shop Scheduling Problems with Unrelated Parallel Machine Solved by Improved Adaptive Genetic Algorithm(IAGA) with ITPX
    ZHENG Kun, LIAN Zhiwei, GU Xinyan, ZHU Changjian, XU Hui, FENG Xueqing
    China Mechanical Engineering    2023, 34 (14): 1647-1658,1671.   DOI: 10.3969/j.issn.1004-132X.2023.14.002
    Abstract761)      PDF(pc) (4458KB)(226)       Save
    Aiming at the hybrid flow-shop scheduling problems, an adaptive genetic algorithm with ITPX was proposed. Firstly, the solution performance of two-points crossover(TPX) was improved by exacting point taking method. Secondly, adaptive selection probability was demonstrated based on hormonal regulation guiding convergence trend of populations. Then, a pool of high-quality chromosomes and a memory factor were established to record the high-quality chromosomes during population evolution, and two different regional crossovers were implemented. Experimentsal results show that ITPX may save optimization time and improve solution performance; the adaptive probability may enhance convergence; ITPX-IAGA may reduce solution time by more than 40% and improve solution performance.
    Reference | Related Articles | Metrics | Comments0
    Tooth Surface Generation and Meshing Characteristics Analysis of Low-angle Face Gear Drives
    ZHOU Ruchuan, WU Wenmin, FENG Manman, GUO Hui, LIN Yanhu
    China Mechanical Engineering    2023, 34 (06): 631-640.   DOI: 10.3969/j.issn.1004-132X.2023.06.001
    Abstract761)      PDF(pc) (6100KB)(559)       Save
     Gear geometry and meshing properties of the low-angle face gear drives were investigated in order to enhance meshing capabilities of the gear drives with small shaft angle in helicopter transmission systems. The applied coordinate systems for generation of the low-angle face gear drive were established and the equation of the tooth surface of the small cone angel face gear was derived based on gear meshing theory. The tooth surface equation of a double-crowned cylindrical involute pinion was deduced by application of a generating worm.  The generated double-crowned pinion was then introduced into the low-angle face gear drive. The TCA was implemented and the influences of misalignments on the contact were researched. Stress analysis was performed for the purpose of evaluating the performance of the proposed face gear drives. And the stresses of the low-angle face gear drive were compared with the conical involute gear and cylindrical involute gear pair. The results show that the application of double-crowned pinion avoids edge contact, providing lower contact and bending stresses compared with the face-gear drive with a longitudinal modification pinion. Under the same conditions, the contact and bending stresses of the tapered face gear are 27% decrease than that of the conical involute gears. 
    Reference | Related Articles | Metrics | Comments0
    Research Progresses of Superhydrophobic Surface Processing Technology and Abrasion Resistance
    HUANG Yun, HUANG Jianchao, XIAO Guijian, LIU Shuai, LIN Ouchuan, LIU Zhenyang
    China Mechanical Engineering    2024, 35 (01): 2-26.   DOI: 10.3969/j.issn.1004-132X.2024.01.001
    Abstract753)      PDF(pc) (50387KB)(786)       Save
    The abrasion resistance of currently prepared superhydrophobic surfaces is generally poor, which limite the applications in various fields. Studied results found that micro-nano structure and low surface energy were the key factors to achieve superhydrophobic properties. Firstly, based on the mechanism of superhydrophobic surface, the superhydrophobic surface texture was summarized, aiming to solve the wear-prone challenge of micro-nano structures by optimizing the surface texture. Secondly, the superhydrophobic surface processing technology was summarized, and measures to reduce surface energy were analyzed in terms of cost and efficiency which might provide ideas for expanding the superhydrophobic surface processing system. Then, the means of analyzing the abrasion resistance of superhydrophobic surfaces were concluded in detail and the methods of improving the abrasion resistance of superhydrophobic surfaces were described. Finally, the future development prospects of abrasion resistant superhydrophobic surfaces was prospected, with a view to promote the large-scale applications of superhydrophobic surfaces in engineering.
    Reference | Related Articles | Metrics | Comments0
    Design and Mechanics Property Analysis for Different Graded Irregular Porous Structures
    TANG Yongfeng, LU Ping, LIU Bin, JIANG Kaiyong, YAN Binggong, LIU Jiawei, HAN Wei,
    China Mechanical Engineering    2022, 33 (23): 2859-2866.   DOI: 10.3969/j.issn.1004-132X.2022.23.010
    Abstract752)      PDF(pc) (9383KB)(422)       Save
     Four different type graded irregular porous structures were designed based on the Voronoi diagram, and the four graded porous structure examples were prepared by the stereolithography molding technology. The longitudinal(load direction parallels to the graded direction)and transverse(load direction perpendiculars to the graded direction)compression tests were carried out on the four graded porous structures to study their deformation characteristics and mechanics properties. The results show that the deformation characteristics of the graded porous structures are similar to that of the uniform porous structure during transverse compression processes, and the deformation characteristics of layer-by-layer collapse are exhibited during longitudinal compression processes. In the case of similar porosity, different graded types may affect the mechanics properties in the longitudinal compression processes but have little effect on the mechanics properties in the transverse compression processes. Decreasing the average porosity of the graded porous structures may improve the mechanics properties of the structures. Finally, combining the iso-stress composite model and the Voigt model, the elastic modulus of the graded porous structures were predicted in the longitudinal and transverse compression processes respectively, and most of the relative errors between the predicted results and the experimental ones are less than 10%. 
    Reference | Related Articles | Metrics | Comments0
    Research Progresses of Dense Environmental Barrier Coatings with High Water Vapor Corrosion Resistance
    DONG Lin, YANG Guanjun, ZHANG Xiaofeng, LIU Meijun, ZHOU Kesong, LI Pu, ZHU Changfa, XU Xiangyi, LIU Kun
    China Mechanical Engineering    2022, 33 (12): 1459-1467.   DOI: 10.3969/j.issn.1004-132X.2022.12.007
    Abstract749)      PDF(pc) (8550KB)(272)       Save
    EBCs were coated on the surfaces of SiC-CMCs to effectively isolate the engine corrosive environment and avoid rapid corrosion failure of the components, which become the key for the applications of SiC-CMCs to hot section components of gas turbine engines. However, interconnected pores were formed in coatings, causing rapid degradation in a combustion environment containing high-temperature water vapor and oxygen. The research progresses of the effects of EBCs materials properties, preparation technologies, and processing parameters on the pore structure were summarized. The effects of pore structure on the water vapor corrosion resistance was analyzed, and the research progresses of EBCs densification were summarized. Finally, future research on the preparation of dense EBCs to improve their water vapor resistance was prospected.
    Reference | Related Articles | Metrics | Comments0
    Design and Performance Evaluation of Amphibious Hexapod Robots
    WANG Yu, ZHOU Shuang, LI Yaxin
    China Mechanical Engineering    2022, 33 (17): 2079-2086.   DOI: 10.3969/j.issn.1004-132X.2022.17.009
    Abstract745)      PDF(pc) (7080KB)(579)       Save
    In order to improve the motion performance of the robots in amphibious environment, and to reduce the mechanical complexity and control difficulty of their motion mechanism switching between water and land, an amphibious hexapod robot with compound moving limbs was proposed. Through the land and underwater motion planning of the robots, the stability problem of the robot adapting to different slope terrain was solved. The multi-degree-of-freedom underwater motions of the robots were realized by configuring the positions and poses of the vectored propeller. The simulation results of the robots crawling motion under ADAMS verify that the mechanical design of the robost is reasonable, and also show that the robots have good stability when climbing on different slopes. In order to further evaluate the motion performance of the robots, a prototype robot was built to test the climbing performance of the robots on the slope, and at the same time, the multi-degree-of-freedom motions of the robot under water were verified, including straight, rotating, floating and diving. The experimental results show that the robots have good motion performance both on land and underwater. 
    Reference | Related Articles | Metrics | Comments0
    Design and Performance Verification of Marine Intelligent Water-lubricated Stern Bearings with Temperature Sensing
    XUE Enchi, GUO Zhiwei, YUAN Chengqing,
    China Mechanical Engineering    2022, 33 (14): 1639-1645.   DOI: 10.3969/j.issn.1004-132X.2022.14.001
    Abstract742)      PDF(pc) (3728KB)(391)       Save
    An innovative design of marine intelligent water-lubricated stern bearings was proposed to assist the tail shaft system for improving operating state monitoring and performance prediction in harsh environments. Based on the micro embedded self-powered monitoring systems and the water-lubricated bearing structures and material designs, some critical performance parameters of water-lubricated bearings in ship sailing were measured and analyzed in real-time, which were used for operating state identification, evaluation, and life prediction. As an example, the internal temperature of bearings was chosen for feasibility verification of the above intelligent water-lubricated tail bearings by CBZ-1 friction and wear tester. The results show that the internal temperature of the bearings may effectively reflect their lubrication and working conditions. Under water lubrication conditions, the initial period heating rate is as 0.1~0.4 ℃/min, the final period heating rate is as 0~0.01 ℃/min, and the temperature during the steady operations is as 29~33 ℃. Under dry friction conditions, the three data are 0.6~1.4 ℃/min, 0.03~0.25 ℃/min and 36~45 ℃, respectively. The huge temperature differences in different lubrication states make it possible to determine the bearing lubrication conditions, which means that temperature monitoring will greatly improve the reliability of water-lubricated bearings.
    Reference | Related Articles | Metrics | Comments0