China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (10): 2312-2321.DOI: 10.3969/j.issn.1004-132X.2025.10.019
Jingjing CHEN(
), Sha CHEN, Haiyan ZHU, Junjun YUAN, Zeyu LUO
Received:2025-02-07
Online:2025-10-25
Published:2025-11-05
Contact:
Jingjing CHEN
通讯作者:
陈晶晶
作者简介:陈晶晶*(通信作者),男,1989年生,校聘副教授。研究方向为机械表/界面摩擦磨损与防护润滑。发表论文30余篇。E-mail:chenjingjingfzu@126.com。基金资助:CLC Number:
Jingjing CHEN, Sha CHEN, Haiyan ZHU, Junjun YUAN, Zeyu LUO. Mechanism Analysis of Material Remove and Subsurface Layer Damages for SiC during Nanocutting Processes[J]. China Mechanical Engineering, 2025, 36(10): 2312-2321.
陈晶晶, 陈莎, 朱海燕, 袁军军, 罗泽宇. SiC硬脆材料纳米切削的亚表层损伤与塑性去除机理探析[J]. 中国机械工程, 2025, 36(10): 2312-2321.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.10.019
| 模拟条件 | 参数设置 |
|---|---|
| 模型尺寸LX ×LY ×LZ | 5.3 nm×48 nm×23 nm |
| 切削速度v | 50,100,200,250,400 m/s |
| 切削深度d | 2.0,2.6,3.5,4.4 nm |
| 半径R | 2.5 nm |
| 恒温层T | 1,150,300,500,800 K |
| 前角β | 0°,15°,25° |
| 后角α | 0°,15°,25° |
| 时间步长 | 1fs |
Tab. 1 Simulation parameter setting of SiC material on nano cutting process
| 模拟条件 | 参数设置 |
|---|---|
| 模型尺寸LX ×LY ×LZ | 5.3 nm×48 nm×23 nm |
| 切削速度v | 50,100,200,250,400 m/s |
| 切削深度d | 2.0,2.6,3.5,4.4 nm |
| 半径R | 2.5 nm |
| 恒温层T | 1,150,300,500,800 K |
| 前角β | 0°,15°,25° |
| 后角α | 0°,15°,25° |
| 时间步长 | 1fs |
| [1] | GIORGIS F, GIULIANI F, PIRRI C F, et al. Wide Band Gap a-Si C:H Films for Optoelectronic Applications[J]. Journal of Non-crystalline Solids, 1998, 227(4):465-469. |
| [2] | ZHANG Z, GUO B, WANG F. Evaluation of Switching Loss Contributed by Parasitic Ringing for Fast Switching Wide Band-gap Devices[J]. IEEE Transactions on Power Electronics, 2019, 34(9):9082-9094. |
| [3] | YUN N, LYNCH J, SUNG W. Demonstration and Analysis of a 600 V, 10 A, 4H-SiC Lateral Single RESURF MOSFET for Power ICs Applications[J]. Applied Physics Letters, 2019, 114(19):192104. |
| [4] | DEMENET J L, AMER M, TROMAS C. Dislocations in 4H-and 3C-SiC Single Crystals in the Brittle Regime[J]. Physics Status Solidi C, 2013, 10 (6):64-67. |
| [5] | BAI S, DEVATY R P, CHOYKE W J, et al. Determination of the Electric Field in 4H/3C/4H-SiC Quantum Wells due to Spontaneous Polarization in the 4H SiC Matrix[J]. Applied Physics Letters, 2003, 83(15):3171-3173. |
| [6] | NEUDECK, PHILIP G. Electrical Impact of SiC Structural Crystal Defects on High Electric Field Devices[J]. Materials Science Forum, 2000, 338(10):1161-1166. |
| [7] | FENG A, MUNIR Z A. The Effect of an Electric Field on Self-sustaining Combustion Synthesis:Part II. Field-assisted Synthesis of μ-SiC[J]. Metallurgical and Materials Transactions B, 1995, 26(3):587-593. |
| [8] | PATRICK L, CHOYKE W J. Static Dielectric Constant of SiC[J]. Physical Review. B, Condensed Matter, 1970, 2(6):2255-2256. |
| [9] | FANG K L, TSUI B Y, YANG C C, et al. Electrical Instability of Low-dielectric Constant Diffusion Barrier Film (a-Si C:H) for Copper Interconnect[J]. IEEE Transactions on Electron Devices, 2001, 48(10):2375-2383. |
| [10] | CHEN M H, DAI H F. Molecular Dynamics Study on Grinding Mechanism of Polycrystalline Silicon Carbide[J]. Diamond and Related Materials, 2022, 130:109541. |
| [11] | QU Z Z, WU W L, DAI H F. Quantitative Analysis of Grinding Performance of Cubic Silicon Carbide Surface Texture Lubricated with Water Film[J]. Tribology International, 2023, 180:108267. |
| [12] | AI T C, LIU J, QIU H J, et al. Removal Behavior and Performance Analysis of Defective Silicon Carbide in Nano-grinding[J]. Precision Engineering, 2021, 72:858-869. |
| [13] | MENG X S, WU W L, LIAO B K, et al. Atomic Simulation of Textured Silicon Carbide Surface Ultra-precision Polishing[J]. Ceramics International, 2022, 48:17034-17045. |
| [14] | TIAN Z, LU J, LUO Q, et al. Chemical Reaction on Silicon Carbide Wafer (0 0 0 1) and (0 0 0 -1) with Water Molecules in Nanoscale Polishing[J]. Applied Surface Science, 2023, 607:155090. |
| [15] | LIU Y, LI B Z, KONG L F. Molecular Dynamics Simulation of Silicon Carbide Nanoscale Material Removal Behaviour[J]. Ceramic International, 2018, 44:11910. |
| [16] | WU Z H, LIU W D, ZHANG L C. Revealing the Deformation Mechanisms of 6H-silicon Carbide under Nano-cutting[J]. Computer Material Science, 2017, 137:282. |
| [17] | XIAO G B, TO S, ZHANG G Q. Molecular Dynamics Modelling of Brittle-ductile Cutting Mode Transition:Case Study on Silicon Carbide[J]. International Journal of Machine Tools & Manufacture, 2015, 88:214-222. |
| [18] | TIAN Z G, XU X P, JIANG F, et.al. Study on Nanomechanical Properties of 4H-SiC and 6H-SiC by Molecular Dynamics Simulations[J]. Ceramic International, 2019, 45:21998-2006. |
| [19] | GOEL S, LUO X C, COMLEY P, et al. Brittle-ductile Transition during Diamond Turning of Single Crystal Silicon Carbide[J]. International Journal of Machine Tools & Manufacture, 2013, 65:15-21. |
| [20] | WANG J S, FANG F Z. Nanometric Cutting Mechanism of Silicon Carbide[J]. CIRP Annals—Manufacturing Technology, 2021, 70:29-32. |
| [21] | 田东禹. 3C-SiC的SEM在线纳米切削机理研究[D]. 天津:天津大学,2020. |
| TIAN Dongyu. Study on the SEM-based Online Nano-cutting Mechanism of 3C-SiC[D]. Tianjin:Tianjin University, 2020. | |
| [22] | PIAO Z, TAO S, XUN S. Atomic-scale Study of Vacancy Defects in SiC Affecting on Removal Mechanisms during Nano-abrasion Process[J].Tribology International, 2020, 145:106136. |
| [23] | AI T C, LIU J, QIU H J, et al. Removal Behavior and Performance Analysis of Defective Silicon Carbide in Nano-grinding[J]. Precision Engineering. 2021,72:858-869. |
| [24] | TIAN Z, CHEN X, XU X P, et al. Molecular Dynamics Simulation of the Material Removal in the Scratching of 4H-SiC and 6H-SiC Substrates[J]. International Journal of Extreme Manufacturing, 2020, 2:045104. |
| [25] | MENG B B, YUAN D D, ZHENG J, et al. Molecular Dynamics Study on Femtosecond Laser Aided Machining of Monocrystalline Silicon Carbide[J]. Material Science Semiconductor Processing, 2019, 101:1-9. |
| [1] | ZHENG Jiangfeng1, 2, 3, ZHANG Guoqing1, 2, 3, HAN Junhong1, 2, 3, LAI Zhihui1, 2, 3. Research on Mechanism of Nano-surface Generation in Diamond Cutting Single-crystal Nickels [J]. China Mechanical Engineering, 2025, 36(05): 963-973. |
| [2] | LI Hong1;YUAN Junli1;LI Zhuoxin1;TILLMANN Wolfgang2;HU Anming1,3. Process of Molecular Dynamics Simulation of Nanojoining Processes [J]. China Mechanical Engineering, 2019, 30(04): 486-493. |
| [3] | NA Jiang-Gong, LIU Geng, TONG Rui-Ting, LIU Lan. #br# Molecular Dynamics Simulation of Friction Behavior on Nanoscale Textured Surfaces [J]. China Mechanical Engineering, 2012, 23(19): 2378-2383. |
| [4] | Guo Xiaoguang;Guo Dongming;Kang Renke;Jin Zhuji. Theoretical Study on the Monocrystal Silicon Nanometric Grinding Process [J]. J4, 2008, 19(23): 0-2897. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||