China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (8): 1864-1874.DOI: 10.3969/j.issn.1004-132X.2025.08.021
Congbo LI(), Hewang ZHAI, Wei WU(
), Ke DONG, Xiangfei ZHANG
Received:
2024-02-27
Online:
2025-08-25
Published:
2025-09-18
Contact:
Wei WU
通讯作者:
吴畏
作者简介:
李聪波,男,1981年生,教授、博士研究生导师。研究方向为绿色制造与智能制造。E-mail:congboli@cqu.edu.cn。
基金资助:
CLC Number:
Congbo LI, Hewang ZHAI, Wei WU, Ke DONG, Xiangfei ZHANG. Energy Consumption Anomaly Detection of Automobile Painting Drying System Based on TCN-GAT and Hybrid Neural Network[J]. China Mechanical Engineering, 2025, 36(8): 1864-1874.
李聪波, 翟贺旺, 吴畏, 董可, 张祥飞. 基于TCN-GAT与混合神经网络的汽车涂装烘干系统能耗异常检测[J]. 中国机械工程, 2025, 36(8): 1864-1874.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.08.021
设备型号 | 采集参数 | 单位 | 2023⁃09⁃01 00∶00 | 2023⁃09⁃01 00∶15 | … | 2023⁃11⁃30 23∶45 |
---|---|---|---|---|---|---|
生产环境温度t0 | ℃ | 28.1633 | 28.1013 | … | 17.1458 | |
P1E1T1WU301 | 加热区WU301热交换箱温度t1 | ℃ | 87.7268 | 84.3041 | … | 92.4576 |
加热区WU301热交换箱压力p1 | Pa | 985.7992 | 941.4691 | … | 945.8357 | |
P1E1T1WU305 | 加热区WU305热交换箱温度t2 | ℃ | 91.8505 | 88.0155 | … | 95.1895 |
加热区WU305热交换箱压力p2 | Pa | 871.3763 | 827.7887 | … | 799.8168 | |
P1E1T1WU311 | 加热区WU311热交换箱温度t3 | ℃ | 202.4742 | 194.2268 | … | 201.5335 |
加热区WU311热交换箱压力p3 | Pa | 1139.1655 | 1087.9481 | … | 1050.1522 | |
P1E1T1WU312 | 加热区WU312热交换箱温度t4 | ℃ | 209.7732 | 201.1959 | … | 199.8039 |
加热区WU312热交换箱压力p4 | Pa | 859.7018 | 901.0312 | … | 852.8688 | |
P1E1T1WU321 | 保温区WU321热交换箱温度t5 | ℃ | 205.8415 | 200.3581 | … | 201.0850 |
保温区WU321热交换箱压力p5 | Pa | 846.2278 | 841.8042 | … | 854.8539 | |
P1E1T1WU322 | 保温区WU322热交换箱温度t6 | ℃ | 210.7216 | 201.6495 | … | 200.9524 |
保温区WU322热交换箱压力p6 | Pa | 995.0804 | 950.4124 | … | 912.7543 | |
P1E1T1WT330 | 新风换热热交换箱出口温度t7 | ℃ | 192.4147 | 184.2268 | … | 167.1398 |
新风换热热交换箱出口压力p7 | Pa | 1989.4853 | 1974.5362 | … | 1946.1635 | |
P1E1T1WT706 | 天然气流量V | m3/h | 206.7545 | 199.2641 | … | 198.3837 |
P1E1T1 | 烘干系统总电流I | A | 695.3133 | 689.1621 | … | 230.9267 |
烘干系统总功率P | kW | 373.1522 | 166.5457 | … | 25.2675 | |
烘干系统产量Q | 辆 | 7 | 8 | … | 2 | |
烘干系统综合能耗E | kgce | 92.1247 | 88.5453 | … | 36.8854 |
Tab.1 The collection parameters of drying system
设备型号 | 采集参数 | 单位 | 2023⁃09⁃01 00∶00 | 2023⁃09⁃01 00∶15 | … | 2023⁃11⁃30 23∶45 |
---|---|---|---|---|---|---|
生产环境温度t0 | ℃ | 28.1633 | 28.1013 | … | 17.1458 | |
P1E1T1WU301 | 加热区WU301热交换箱温度t1 | ℃ | 87.7268 | 84.3041 | … | 92.4576 |
加热区WU301热交换箱压力p1 | Pa | 985.7992 | 941.4691 | … | 945.8357 | |
P1E1T1WU305 | 加热区WU305热交换箱温度t2 | ℃ | 91.8505 | 88.0155 | … | 95.1895 |
加热区WU305热交换箱压力p2 | Pa | 871.3763 | 827.7887 | … | 799.8168 | |
P1E1T1WU311 | 加热区WU311热交换箱温度t3 | ℃ | 202.4742 | 194.2268 | … | 201.5335 |
加热区WU311热交换箱压力p3 | Pa | 1139.1655 | 1087.9481 | … | 1050.1522 | |
P1E1T1WU312 | 加热区WU312热交换箱温度t4 | ℃ | 209.7732 | 201.1959 | … | 199.8039 |
加热区WU312热交换箱压力p4 | Pa | 859.7018 | 901.0312 | … | 852.8688 | |
P1E1T1WU321 | 保温区WU321热交换箱温度t5 | ℃ | 205.8415 | 200.3581 | … | 201.0850 |
保温区WU321热交换箱压力p5 | Pa | 846.2278 | 841.8042 | … | 854.8539 | |
P1E1T1WU322 | 保温区WU322热交换箱温度t6 | ℃ | 210.7216 | 201.6495 | … | 200.9524 |
保温区WU322热交换箱压力p6 | Pa | 995.0804 | 950.4124 | … | 912.7543 | |
P1E1T1WT330 | 新风换热热交换箱出口温度t7 | ℃ | 192.4147 | 184.2268 | … | 167.1398 |
新风换热热交换箱出口压力p7 | Pa | 1989.4853 | 1974.5362 | … | 1946.1635 | |
P1E1T1WT706 | 天然气流量V | m3/h | 206.7545 | 199.2641 | … | 198.3837 |
P1E1T1 | 烘干系统总电流I | A | 695.3133 | 689.1621 | … | 230.9267 |
烘干系统总功率P | kW | 373.1522 | 166.5457 | … | 25.2675 | |
烘干系统产量Q | 辆 | 7 | 8 | … | 2 | |
烘干系统综合能耗E | kgce | 92.1247 | 88.5453 | … | 36.8854 |
数据集 | 正常数据/条 | 数据占比/ % | 异常数据/条 | 数据占比/ % |
---|---|---|---|---|
训练集 | 7378 | 100 | 0 | 0 |
测试集1 | 672 | 97.0 | 20 | 3.0 |
测试集2 | 672 | 93.6 | 43 | 6.4 |
Tab.2 Anomaly detection dataset information
数据集 | 正常数据/条 | 数据占比/ % | 异常数据/条 | 数据占比/ % |
---|---|---|---|---|
训练集 | 7378 | 100 | 0 | 0 |
测试集1 | 672 | 97.0 | 20 | 3.0 |
测试集2 | 672 | 93.6 | 43 | 6.4 |
模型 | 超参数 | 数值 |
---|---|---|
TCN | TCN网络数量 时间卷积模块数量 | 3 3 |
卷积核大小 | 3,5,7 | |
隐藏层通道数量 | [32,64,32] | |
激活函数 | ReLU | |
时间特征融合网络 | 平均池化层窗口大小 | 3×3 |
步幅 | 3 | |
全连接层 | [32,16] | |
GAT | 节点数目 | 20 |
注意力头数 | 4 | |
激活函数 | LeakyReLU | |
节点特征维度 | 15 | |
融合网络 | 全连接层 | [32, 16, 8] |
Tab.3 Super parameter setting of the model
模型 | 超参数 | 数值 |
---|---|---|
TCN | TCN网络数量 时间卷积模块数量 | 3 3 |
卷积核大小 | 3,5,7 | |
隐藏层通道数量 | [32,64,32] | |
激活函数 | ReLU | |
时间特征融合网络 | 平均池化层窗口大小 | 3×3 |
步幅 | 3 | |
全连接层 | [32,16] | |
GAT | 节点数目 | 20 |
注意力头数 | 4 | |
激活函数 | LeakyReLU | |
节点特征维度 | 15 | |
融合网络 | 全连接层 | [32, 16, 8] |
数据集 | 训练集占比/% | 精确率 | 召回率 | F1-score |
---|---|---|---|---|
测试集1 | 60 | 0.8840 | 0.8910 | 0.8875 |
70 | 0.8915 | 0.8961 | 0.8938 | |
80 | 0.9215 | 0.8984 | 0.9098 | |
90 | 0.9417 | 0.9242 | 0.9329 | |
100 | 0.9764 | 0.9522 | 0.9641 | |
测试集2 | 60 | 0.8474 | 0.8714 | 0.8592 |
70 | 0.8855 | 0.8925 | 0.8890 | |
80 | 0.9018 | 0.9284 | 0.9149 | |
90 | 0.9178 | 0.9202 | 0.9190 | |
100 | 0.9512 | 0.9635 | 0.9573 |
Tab.4 The anomaly detection results of the training set
数据集 | 训练集占比/% | 精确率 | 召回率 | F1-score |
---|---|---|---|---|
测试集1 | 60 | 0.8840 | 0.8910 | 0.8875 |
70 | 0.8915 | 0.8961 | 0.8938 | |
80 | 0.9215 | 0.8984 | 0.9098 | |
90 | 0.9417 | 0.9242 | 0.9329 | |
100 | 0.9764 | 0.9522 | 0.9641 | |
测试集2 | 60 | 0.8474 | 0.8714 | 0.8592 |
70 | 0.8855 | 0.8925 | 0.8890 | |
80 | 0.9018 | 0.9284 | 0.9149 | |
90 | 0.9178 | 0.9202 | 0.9190 | |
100 | 0.9512 | 0.9635 | 0.9573 |
超参数 | 模型 | |||
---|---|---|---|---|
VAE | GAN | OC-CNN | LSTM | |
网络层数 | 3(编码器) | 3(生成器) | 4(卷积层) | 4(LSTM) |
3(解码器) | 2(判别器) | |||
学习率 | 0.001 | 0.001 | 0.001 | 0.001 |
迭代次数 | 800 | 800 | 800 | 800 |
批次大小 | 32 | 32 | 32 | 32 |
输入维度 | 9 | 9 | 8 | 8 |
输出维度 | 9 | 9 | 1 | 1 |
激活函数 | Tanh | ReLU | ReLU | ReLU |
隐藏层大小 | 32,64,32 | 32,64,32 | 32,64,32 | 32,64,32 |
Tab.5 The algorithm hyperparameter settings
超参数 | 模型 | |||
---|---|---|---|---|
VAE | GAN | OC-CNN | LSTM | |
网络层数 | 3(编码器) | 3(生成器) | 4(卷积层) | 4(LSTM) |
3(解码器) | 2(判别器) | |||
学习率 | 0.001 | 0.001 | 0.001 | 0.001 |
迭代次数 | 800 | 800 | 800 | 800 |
批次大小 | 32 | 32 | 32 | 32 |
输入维度 | 9 | 9 | 8 | 8 |
输出维度 | 9 | 9 | 1 | 1 |
激活函数 | Tanh | ReLU | ReLU | ReLU |
隐藏层大小 | 32,64,32 | 32,64,32 | 32,64,32 | 32,64,32 |
数据集 | 模型 | 指标 | ||
---|---|---|---|---|
精确率 | 召回率 | F1-score | ||
测试集1 | VAE | 0.9012 | 0.9133 | 0.9072 |
GAN | 0.8807 | 0.8835 | 0.8821 | |
OC-CNN | 0.9415 | 0.9338 | 0.9376 | |
LSTM | 0.9248 | 0.9214 | 0.9231 | |
本文模型 | 0.9764 | 0.9522 | 0.9641 | |
测试集2 | VAE | 0.8998 | 0.9024 | 0.9011 |
GAN | 0.8798 | 0.8994 | 0.8895 | |
OC-CNN | 0.9608 | 0.9211 | 0.9405 | |
LSTM | 0.9555 | 0.8791 | 0.9157 | |
本文模型 | 0.9512 | 0.9635 | 0.9573 |
Tab.6 The algorithm comparison results
数据集 | 模型 | 指标 | ||
---|---|---|---|---|
精确率 | 召回率 | F1-score | ||
测试集1 | VAE | 0.9012 | 0.9133 | 0.9072 |
GAN | 0.8807 | 0.8835 | 0.8821 | |
OC-CNN | 0.9415 | 0.9338 | 0.9376 | |
LSTM | 0.9248 | 0.9214 | 0.9231 | |
本文模型 | 0.9764 | 0.9522 | 0.9641 | |
测试集2 | VAE | 0.8998 | 0.9024 | 0.9011 |
GAN | 0.8798 | 0.8994 | 0.8895 | |
OC-CNN | 0.9608 | 0.9211 | 0.9405 | |
LSTM | 0.9555 | 0.8791 | 0.9157 | |
本文模型 | 0.9512 | 0.9635 | 0.9573 |
数据集 | 模型 | 精确率 | 召回率 | F1-score |
---|---|---|---|---|
测试集1 | V1 | 0.8741 | 0.8978 | 0.8858 |
V2 | 0.8638 | 0.8676 | 0.8657 | |
V3 | 0.8447 | 0.7880 | 0.8154 | |
V4 | 0.9407 | 0.9231 | 0.9318 | |
V5 | 0.9211 | 0.9243 | 0.9227 | |
本文模型 | 0.9764 | 0.9522 | 0.9641 | |
测试集2 | V1 | 0.8467 | 0.8147 | 0.8304 |
V2 | 0.8517 | 0.8452 | 0.8484 | |
V3 | 0.8348 | 0.7967 | 0.8153 | |
V4 | 0.9350 | 0.9274 | 0.9312 | |
V5 | 0.9167 | 0.9434 | 0.9299 | |
本文模型 | 0.9512 | 0.9635 | 0.9573 |
Tab.7 The result of ablation experiment
数据集 | 模型 | 精确率 | 召回率 | F1-score |
---|---|---|---|---|
测试集1 | V1 | 0.8741 | 0.8978 | 0.8858 |
V2 | 0.8638 | 0.8676 | 0.8657 | |
V3 | 0.8447 | 0.7880 | 0.8154 | |
V4 | 0.9407 | 0.9231 | 0.9318 | |
V5 | 0.9211 | 0.9243 | 0.9227 | |
本文模型 | 0.9764 | 0.9522 | 0.9641 | |
测试集2 | V1 | 0.8467 | 0.8147 | 0.8304 |
V2 | 0.8517 | 0.8452 | 0.8484 | |
V3 | 0.8348 | 0.7967 | 0.8153 | |
V4 | 0.9350 | 0.9274 | 0.9312 | |
V5 | 0.9167 | 0.9434 | 0.9299 | |
本文模型 | 0.9512 | 0.9635 | 0.9573 |
[1] | ZHAO Fuquan, LIU Xinglong, ZHANG Haoyi, et al. Automobile Industry under China's Carbon Peaking and Carbon Neutrality Goals: Challenges, Opportunities, and Coping Strategies[J]. Journal of Advanced Transportation, 2022, 2022(1): 5834707. |
[2] | GIAMPIERI A, MA Zhiwei, LING-CHIN J, et al. A Techno-economic Evaluation of Low-grade Excess Heat Recovery and Liquid Desiccant-based Temperature and Humidity Control in Automotive Paint Shops[J]. Energy Conversion and Management, 2022, 261: 115654. |
[3] | GIAMPIERI A, LING-CHIN J, MA Z, et al. A Review of the Current Automotive Manufacturing Practice from an Energy Perspective[J]. Applied Energy, 2020, 261: 114074. |
[4] | PANG Guansong, SHEN Chunhua, CAO Longbing, et al. Deep Learning for Anomaly Detection: a Review[J]. ACM Computing Surveys, 2021, 54(2): 1-38. |
[5] | SIMMINI F, RAMPAZZO M, PETERLE F, et al. A Self-tuning KPCA-based Approach to Fault Detection in Chiller Systems[J]. IEEE Transactions on Control Systems Technology, 2022, 30(4): 1359-1374. |
[6] | YIN Sihua, YANG Haidong, XU Kangkang, et al. Dynamic Real-time Abnormal Energy Consumption Detection and Energy Efficiency Optimization Analysis Considering Uncertainty[J]. Applied Energy, 2022, 307: 118314. |
[7] | JIN Feng, WU Hao, LIU Yang, et al. Varying-scale HCA-DBSCAN-based Anomaly Detection Method for Multi-dimensional Energy Data in Steel Industry[J]. Information Sciences, 2023, 647: 119479. |
[8] | SØNDERGAARD H A N, SHAKER H R, JØRGENSEN B N. Automated and Real-time Anomaly Indexing for District Heating Maintenance Decision Support System[J]. Applied Thermal Engineering, 2023, 233: 120964. |
[9] | 李熙, 张立成. 针对时间序列的城轨牵引能耗异常分析[J]. 北京交通大学学报, 2021, 45(5): 30-36. |
LI Xi, ZHANG Licheng. Outlier Analysis of Urban Rail Traction Energy Consumption Based on Time Series[J]. Journal of Beijing Jiaotong University, 2021, 45(5): 30-36. | |
[10] | HUNDMAN K, CONSTANTINOU V, LAPORTE C, et al. Detecting Spacecraft Anomalies Using LSTMS and Nonparametric Dynamic Thresholding[C]∥Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. London, 2018: 387-395. |
[11] | DING Nan, GAO Huanbo, BU Hongyu, et al. RADM: Real-time Anomaly Detection in Multivariate Time Series Based on Bayesian Network[C]∥2018 IEEE International Conference on Smart Internet of Things (SmartIoT). Xi'an, 2018: 129-134. |
[12] | CHEN Zekai, CHEN Dingshuo, ZHANG Xiao, et al. Learning Graph Structures with Transformer for Multivariate Time-series Anomaly Detection in IoT[J]. IEEE Internet of Things Journal, 2022, 9(12): 9179-9189. |
[13] | ZHAO Hongshan, LIU Huihai, HU Wenjing, et al. Anomaly Detection and Fault Analysis of Wind Turbine Components Based on Deep Learning Network[J]. Renewable Energy, 2018, 127: 825-834. |
[14] | ZHANG Hongwei, XIA Yuanqing, YAN Tijin, et al. Unsupervised Anomaly Detection in Multivariate Time Series through Transformer-based Variational Autoencoder[C]∥2021 33rd Chinese Control and Decision Conference(CCDC). Kunming, 2021: 281-286. |
[15] | SONG Ge, HONG S H, KYZER T, et al. Energy Consumption Auditing Based on a Generative Adversarial Network for Anomaly Detection of Robotic Manipulators[J]. Future Generation Computer Systems, 2023, 149: 376-389. |
[16] | LINANDER H, BALABANOV O, YANG H, et al. Looking at the Posterior: Accuracy and Uncertainty of Neural-network Predictions[J]. Machine Learning: Science and Technology, 2023, 4(4): 045032. |
[17] | IQBAL T, QURESHI S. Reconstruction Probability-based Anomaly Detection Using Variational Auto-encoders[J]. International Journal of Computers and Applications, 2023, 45(3):231-237. |
[18] | SUN Changcheng, HE Zhiwei, LIN Huipin, et al. Anomaly Detection of Power Battery Pack Using Gated Recurrent Units Based Variational Autoencoder[J]. Applied Soft Computing, 2023, 132: 109903. |
[1] | Xingyu ZHAO, Tieshi ZHAO, Bo XU, Xiangquan LIU, Yufei QIN. Kinematics and Transmission Performance Analyses of Parallel Hybrid Drive Mechanisms [J]. China Mechanical Engineering, 2025, 36(8): 1728-1739. |
[2] | SONG Lijun, LIU Songlin, XIN Yu, MA Jinghua, XIE Zhengqiu. Residual Life Prediction for Bearings Based on Bearing Degradation State Assessment and IGAT-BiGRU Network [J]. China Mechanical Engineering, 2025, 36(07): 1562-1572. |
[3] | JIAO Huachao, SUN Wenlei, WANG Hongwei. Bearing Fault Data Generation Method Based on WLT-ACGAN [J]. China Mechanical Engineering, 2025, 36(03): 546-557. |
[4] | DUAN Bowei1, WANG Dongcheng1, 2, XU Yanghuan1, LIU Hongmin1. Multi-channel Flatness Parallel Prediction Method for Cold Rolled Strips [J]. China Mechanical Engineering, 2025, 36(03): 558-569. |
[5] | CHEN Yu1, XIANG Wei1, 2, LIN Wenwen1, GONG Chuan1, ZHANG Huaizhi1, YU Renhao1. Abnormal Detection of Injection Molding Products Based on Semi-supervised Learning Dual-model Structure [J]. China Mechanical Engineering, 2025, 36(03): 576-583. |
[6] | LI Yibing1, 2, CAO Yan1, GUO Jun1, 2, WANG Lei1, 2, LI Xixing3, SUN Libo4. Research on Flexible Job-shop Scheduling Considering Constraints of Peak Power Constrained [J]. China Mechanical Engineering, 2025, 36(02): 280-293. |
[7] | WANG Yongqing, AI Jingchao, LI Te, LAN Tian, LIU Haibo. High Precision Weld Grinding Method of In-pipe Robots Considering Stiffness Characteristics [J]. China Mechanical Engineering, 2025, 36(02): 351-358,368. |
[8] | LIU Huaiju, LU Zehua, ZHU Caichao. State-of-the-art and Trend of High Loading Capacity Plastic Gear Drives [J]. China Mechanical Engineering, 2025, 36(01): 2-17. |
[9] | XU Teng, DENG Chunyang, QIU Guoqiang, XIE Zefeng, RAN Jiaqi, GONG Feng. Strain Rate Effect and Formability Research of High-speed Stage Deep Drawing for Pure Tantalum Thin-wall Members [J]. China Mechanical Engineering, 2024, 35(12): 2157-2168. |
[10] | ZHANG Lei1, 2, 3, SUN Xuetao1, 2, CHEN Jie1, 2, SUN Yuanbo3, GUO Jiajia1, 2, ZHENG Jie1, 2. Research Progresses on Reliability Analysis and Optimal Design of Automobile Structures [J]. China Mechanical Engineering, 2024, 35(11): 1948-1962,1970. |
[11] | ZHU Zhengyu1, GUO Jutao2, LYU Youlong3, ZUO Liling1, ZHANG Jie3. Deep Reinforcement Learning Method for Flexible Job Shop Scheduling [J]. China Mechanical Engineering, 2024, 35(11): 2007-2014,2034. |
[12] | LI Yue1, 2, XIE Heng1, ZHOU Gongbo1, 2, ZHOU Ping1, 2, LI Menggang1, 2. Soft Sensor Modeling and Uncertainty Analysis Approach of Tool Wear Based on Semi-supervised Bayesian Transformer [J]. China Mechanical Engineering, 2024, 35(11): 2015-2025. |
[13] | YAN Wei1, 3, WANG Xinyi2, 3, ZHANG Hua3, ZHU Shuo2, 3, JIANG Zhigang2, 3. Optimization Decision of CFRP Processing Parameters Considering Cutting Energy Consumption and Surface Quality [J]. China Mechanical Engineering, 2024, 35(10): 1834-1844. |
[14] | GAO Xinqin, YANG Xueqi, ZHENG Haiyang. Residual Life Prediction Method of Belt Conveyors Based on MDT Learning [J]. China Mechanical Engineering, 2024, 35(08): 1435-1448. |
[15] | JIN Qichao1, 2, BAO Huzi1, LI Liangwan3, WANG Wenhu3, ZHANG Jinqi1, YE Ziyin1, GUO Lei1. Research on Influences of Surface Roughness and Hardening Rate on Fatigue Property in DD5 Creep Feed Grinding [J]. China Mechanical Engineering, 2024, 35(08): 1472-1479. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||