China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (02): 280-293.DOI: 10.3969/j.issn.1004-132X.2025.02.011

Previous Articles     Next Articles

Research on Flexible Job-shop Scheduling Considering Constraints of Peak Power Constrained

LI Yibing1,2;CAO Yan1;GUO Jun1,2*;WANG Lei1,2;LI Xixing3;SUN Libo4   

  1. 1.School of Mechanical and Electronic Engineering,Wuhan University of Technology,Wuhan,430070
    2.Hubei Key Laboratory of Digital Manufacturing,Wuhan University of Technology,Wuhan,430070
    3.School of Mechanical Engineering,Hubei University of Technology,Wuhan,430068
    4.Tianjin Cement Industry Design & Research Institute Co.,Ltd.,Tianjin,300400

  • Online:2025-02-25 Published:2025-04-02

考虑峰值功率受限约束的柔性作业车间调度研究

李益兵1,2;曹岩1;郭钧1,2*;王磊1,2;李西兴3;孙利波4   

  1. 1.武汉理工大学机电工程学院,武汉,430070
    2.数字制造湖北省重点实验室,武汉,430070
    3.湖北工业大学机械工程学院,武汉,430068
    4.天津水泥工业设计研究院有限公司,天津,300400
  • 作者简介:李益兵,男,1978年生,教授。研究方向为车间调度与优化等,发表论文50余篇。E-mail:ahlyb@whut.edu.cn。
  • 基金资助:
    国家自然科学基金(52305552,52375510)

Abstract: Peak power constrained flexible job shop scheduling problem(PPCFJSP) model was established to address the challenges of increased work cycles and increased machine load in flexible job shop scheduling under the constraints of peak power in the workshops. The optimization objectives were to minimize the maximum completion time and the maximum machine loads, taking into account the constraints of peak power in the workshops. For better scheduling decisions, firstly, the problem was transformed into a Markov decision process, then, a scheduling framework combining offline training and online scheduling was designed for solving PPCFJSP. Secondly, a double dueling deep q-network based on priority experience replay(D3QNPER) algorithm was designed based on priority experience replay, and a ε- greedy descent strategy introducing noise was designed to improve the convergence speed of the algorithm, further enhance the solving ability and stability of the solution results. Finally, experimental and algorithmic comparative studies were conducted to verify the effectiveness of the model and algorithm.

Key words: flexible job shop scheduling, Markov decision process, deep reinforcement learning, peak power constrained

摘要: 针对车间峰值功率受限约束下的柔性作业车间调度面临的作业周期增加、机器负荷增大的问题,建立以最小化最大完工时间和最小化机器最大负载为优化目标、考虑车间峰值功率约束的柔性作业车间调度问题(PPCFJSP)模型。为更好地调度决策,首先将该问题转化为马尔可夫决策过程,基于此设计了一个结合离线训练与在线调度的用于求解PPCFJSP的调度框架。然后设计了一种基于优先级经验重放的双重决斗深度Q网络(D3QNPER)算法,并设计了一种引入噪声的ε-贪婪递减策略,提高了算法收敛速度,进一步提高了求解能力和求解结果的稳定性。最后开展实验与算法对比研究,验证了模型和算法的有效性。

关键词: 柔性作业车间调度, 马尔可夫决策过程, 深度强化学习, 峰值功率受限

CLC Number: