[1] |
DUBOV A A. A Study of Metal Properties Using the Method of Magnetic Memory[J]. Metal Science and Heat Treatment, 1997, 39(9):401-405.
|
[2] |
苏三庆,高志刚,王威. 受拉钢丝应力状态的磁记忆信号峰峰值判别技术[J]. 西安建筑科技大学学报(自然科学版), 2018, 50(2):155-161.
|
|
SU Sanqing, GAO Zhigang, WANG Wei. Discrimination of Stress Stage about Steel Wire under Tension Based on Peak-peak Difference Value of Magnetic Memory Signals[J]. Journal of Xi’an University of Architecture and Technology, 2018, 50(2):155-161.
|
[3] |
赵秉勋. 腐蚀-力-磁耦合模型及金属应力腐蚀的磁记忆方法研究[D]. 北京:北京交通大学, 2022.
|
|
ZHAO Bingxun. Research on corrosion-stress-magnetic coupling model and stress corrosion of metal based on magnetic memory method[D]. Beijing:Beijing Jiaotong University, 2022.
|
[4] |
湛立宁, 卢俊文, 王肖逸, 等. 非接触式磁应力检测技术在埋地管道腐蚀评价中的应用[J]. 管道技术与设备, 2023(1):46-50.
|
|
ZHAN Lining, LU Junwen, WANG Xiaoyi, et al. Application of Non-contact Magnetic Stress Detection Technology in Corrosion Evaluation of Buried Pipelines[J]. Pipeline Technique and Equipment, 2023(1):46-50.
|
[5] |
焦杨. 非接触式磁记忆检测技术在埋地管道上的应用[J]. 全面腐蚀控制, 2017, 31(11):23-25.
|
|
JIAO Yang. Application of Non Contact Magnetic Memory Testing Technology in Buried Pipeline[J]. Total Corrosion Control, 2017, 31(11):23-25.
|
[6] |
石明江, 陈瑞, 冯林. 基于磁记忆的金属管道缺陷检测方法[J]. 电子测量与仪器学报, 2022, 36(1):44-53.
|
|
SHI Mingjiang, CHEN Rui, FENG Lin. Metal Pipeline Defect Detection Method Based on Magnetic Memory[J]. Journal of Electronic Measurement and Instrumentation, 2022, 36(1):44-53.
|
[7] |
万勇, 王宇, 杨勇, 等. 管道缺陷类型多特征量阈值识别方法[J]. 油气储运, 2020, 39(3):268-276.
|
|
WAN Yong, WANG Yu, YANG Yong, et al. Multi-characteristic Threshold Identification Method for Pipeline Defect Types[J]. Oil & Gas Storage and Transportation, 2020, 39(3):268-276.
|
[8] |
王贵生, 李炜, 杨勇, 等. 基于磁记忆信号特征的管道缺陷分类识别和分级识别方法[J]. 腐蚀与防护, 2022, 43(11):68-73.
|
|
WANG Guisheng, LI Wei, YANG Yong, et al. Identification Methods for Pipeline Defect Classification and Grading Based on Magnetic Memory Signal Characteristics[J]. Corrosion & Protection, 2022, 43(11):68-73.
|
[9] |
WAN Yuan, CHEN Xiaoli, SHI Ying. Adaptive Cost Dynamic Time Warping Distance in Time Series Analysis for Classification[J]. Journal of Computational and Applied Mathematics, 2017, 319:514-520.
|
[10] |
KIPF T N, WELLING M. Semi-supervised Classification with Graph Convolutional Networks[J]. ArXiv e-Prints, 2016:arXiv:.
|
[11] |
WANG Zhiguang, YAN Weizhong, OATES T. Time Series Classification from Scratch with Deep Neural Networks:a Strong Baseline[C]∥2017 International Joint Conference on Neural Networks. Anchorage, 2017:1578-1585.
|
[12] |
HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep Residual Learning for Image Recognition[C]∥2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, 2016:770-778.
|
[13] |
SANTURKAR S, TSIPRAS D, ILYAS A, et al. How Does Batch Normalization Help Optimization?[J]. arXiv, 2018:1805.11604.
|
[14] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is All You Need[J]. arXiv, 2017:1706.03762.
|
[15] |
廖柯熹, 冷吉辉, 何腾蛟, 等. 一种埋地管道腐蚀缺陷检测方法[J]. 腐蚀与防护, 2021, 42(2):52-55.
|
|
LIAO Kexi, LENG Jihui, HE Tengjiao, et al. A Method for Detecting Corrosion Defects in Buried Pipelines[J]. Corrosion & Protection, 2021, 42(2):52-55.
|