[1]白大山, 陈五一, 陈雪梅. 碳纤维增强复合材料/轻合金叠层结构制孔技术研究进展[J]. 航空制造技术, 2022, 65(9):82-90.
BAI Dashan, CHEN Wuyi, CHEN Xuemei. Progressof Hole Making Technology for Carbon Fibre Reinforced Composites/Light Alloy Laminated Structures[J]. Aeronautical Manufacturing Technology, 2022, 65(9):82-90.
[2]刘献礼, 李雪冰, 丁明娜, 等. 面向智能制造的刀具全生命周期智能管控技术[J]. 机械工程学报, 2021, 57(10):196-219.
LIU Xianli, LI Xuebing, DING Mingna, et al. Intelligent Control Technology for the Whole Life Cycle of Cutting Tools Towards Intelligent Manufacturing[J]. Journal of Mechanical Engineering, 2021, 57(10):196-219.
[3]ZHANG X W, YU T B, XU P F, et al. In-process Stochastic Tool Wear Identification and Its Application to the Improved Cutting Force Modeling of Micro Milling[J]. Mechanical Systems and Signal Processing, 2022, 164:1-13.
[4]孔凡霞, 张德远. 高温合金微量润滑振动钻削温度与刀具磨损[J]. 北京航空航天大学学报, 2012, 38(6):849-852.
KONG Fanxia, ZHANG Deyuan. High Temperature Alloy Micro-lubrication Vibratory Drilling Temperature and Tool Wear[J]. Journal of Beijing University of Aeronautics and Astronautics, 2012, 38(6):849-852.
[5]祝和意, 李宏波, 张合沛, 等. 基于改进CRITIC法的TBM刀具声发射信号研究[J]. 振动与冲击, 2016, 35(6):197-202.
ZHU Heyi, LI Hongbo, ZHANG Hepei, et al. Study of Acoustic Emission Signals from TBM Tools Based on The Improved CRITIC Method[J]. Journal of Vibration and Shock, 2016, 35(6):197-202.
[6]滕洪钊, 邓朝晖, 吕黎曙, 等. 多传感器信息融合的加工过程状态监测研究[J]. 机械工程学报, 2022, 58(6):26-41.
TENG Hongzhao, DENG Chaohui, LYU Lishu, et al. Research on Multi-sensor Information Fusion for Process Condition Monitoring[J]. Journal of Mechanical Engineering, 2022, 58(6):26-41.
[7]刘会永, 张松, 李剑峰, 等. 采用改进CNN-BiLSTM模型的刀具磨损状态监测[J].中国机械工程, 2022, 33(16):1940-1947.
LIU Huiyong, ZHANG Song, LI Jianfeng, et al. Tool Wear Detection Based on Improved CNN-BiLSTM Model[J]. China Mechanical Engineering, 2022, 33(16):1940-1947.
[8]GOUARIR A, MARTNEZ G, TERRAZAS G, et al. In-process Tool Wear Prediction System Based on Machine Learning Techniques and Force Analysis[J]. Procedia CIRP, 2018, 77:501-504.
[9]QIN B, WANG Y Q, LIU K, et al. A Novel Online Tool Condition Monitoring Method for Milling Titanium Alloy with Consideration of Tool Wear Law[J]. Mechanical Systems and Signal Processing, 2023, 199:1-15.
[10]尹晨, 周世超, 何建樑, 等.基于多源同步信号与深度学习的刀具磨损在线识别方法[J]. 中国机械工程, 2021, 32(20):2482-2491.
YIN Chen, ZHOU Shichao, HE Jianliang, et al. Tool Wear Online Recognition Method Based on Multi-source Synchronous Signals and Deep Learning[J]. China Mechanical Engineering, 2021, 32(20):2482-2491.
[11]PAN W J, QU H Y, SUN Y H, et al. A Deep Convolutional Neural Network Model with Two-stream Feature Fusion and Cross-load Adaptive Characteristics for Fault Diagnosis[J]. Measurement Science and Technology, 2023, 34(9):1-23.
[12]JADERBERG M, SIMONYAN K, ZISSERMAN A, et al. Spatial Transformer Networks[M/OL]. Cambridge:MIT Press,[2023-10-12].https:∥doi.org/10.48550/arXiv.1506.02025.
[13]WANG W G, SHEN J B, DONG X P, et al. Salient Object Detection Driven by Fixation Prediction[C]∥IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake, 2018:1711-1720.
[14]HU J, SHEN L, ALBANIE S, et al. Squeeze and Excitation Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8):2011-2023.
[15]谢松峰. CFRP/TC4叠层构件低频振动制孔刀具磨损状态监测技术研究[D]. 南京:南京航空航天大学, 2021.
XIE Songfeng. Research on the Monitoring Technology of Low-frequency Vibration Tool Wear State of CFRP/TC4 Laminated Components for Hole Making[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2021.
[16]杨蕊, 李宏坤, 贺长波, 等. 利用最优小波尺度循环谱的滚动轴承早期故障特征提取[J]. 机械工程学报, 2018, 54(17):208-217.
TANG Rui, LI Hongkun, HE Changbo, et al. Early Failure Feature Extractionof Rolling Bearings Using Optimal Wavelet Scale Cyclic Spectr[J]. Journal of Mechanical Engineering, 2018, 54(17):208-217.
[17]许祖德. 国际标准ISO3685—1977(E)单刃车削刀具的寿命试验(续)[J]. 工具技术, 1979 (5):51-64.
XU Zude. International Standard ISO 3685-1977(E) Life Tests For Single Flute Turning Tools (continued)[J]. Tool Technology, 1979(5):51-64.
[18]LI G, HU J Y, SHAN D W, et al. A CNN Model Based on Innovative Expansion Operation Improving the Fault Diagnosis Accuracy of Drilling Pump Fluid End[J]. Mechanical Systems and Signal Processing, 2023, 187:1-15.
[19]李正官, 韩天杰, 王超群, 等. 基于VGG-19卷积神经网络的刀具磨损监测方法[J]. 机械设计与制造工程, 2020, 49(6):93-97.
LI Zhengguan, HAN Tianjie, WANG Chaoqun, et al. Tool Wear Monitoring Method Based on VGG-19 Convolutional Neural Network[J]. Mechanical Design and Manufacturing Engineering, 2020, 49(6):93-97.
[20]HE K M, ZHANG X Y, REN S Q, et al. Deep Residual Learning for Image Recognition[C]∥IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, 2016:770-778.
|