China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (12): 3047-3056.DOI: 10.3969/j.issn.1004-132X.2025.12.030
Chengshuo LIU1(
), Xiaojun LIN2, Bo ZHONG1, Wenhui DENG1
Received:2025-02-12
Online:2025-12-25
Published:2025-12-31
Contact:
Chengshuo LIU
通讯作者:
刘承硕
作者简介:刘承硕*(通信作者),男,1999年生,助理工程师。研究方向为航空发动机复杂薄壁件精密加工、先进光学制造、离子束抛光。E-mail:1755483268@qq.com。
基金资助:CLC Number:
Chengshuo LIU, Xiaojun LIN, Bo ZHONG, Wenhui DENG. Technology on Flexible Polishing for Leading and Trailing Edges of Blisk Blades[J]. China Mechanical Engineering, 2025, 36(12): 3047-3056.
刘承硕, 蔺小军, 钟波, 邓文辉. 整体叶盘叶片前后缘柔性抛光技术[J]. 中国机械工程, 2025, 36(12): 3047-3056.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.12.030
实验 次数 | 压缩量ap/mm | 海绵砂圈 半径R/mm | 抛光接触区域 曲率半径r/mm |
|---|---|---|---|
| 1 | 0.6 | 10 | 0.2 |
| 2 | 0.2 | 8 | 0.4 |
| 3 | 0.6 | 6 | 0.4 |
| 4 | 0.2 | 10 | 0.3 |
| 5 | 0.4 | 10 | 0.4 |
| 6 | 0.6 | 8 | 0.3 |
| 7 | 0.4 | 8 | 0.2 |
| 8 | 0.4 | 6 | 0.3 |
| 9 | 0.2 | 6 | 0.2 |
Tab.1 Orthogonal experimental parameter selection
实验 次数 | 压缩量ap/mm | 海绵砂圈 半径R/mm | 抛光接触区域 曲率半径r/mm |
|---|---|---|---|
| 1 | 0.6 | 10 | 0.2 |
| 2 | 0.2 | 8 | 0.4 |
| 3 | 0.6 | 6 | 0.4 |
| 4 | 0.2 | 10 | 0.3 |
| 5 | 0.4 | 10 | 0.4 |
| 6 | 0.6 | 8 | 0.3 |
| 7 | 0.4 | 8 | 0.2 |
| 8 | 0.4 | 6 | 0.3 |
| 9 | 0.2 | 6 | 0.2 |
实 验 次 数 | 长轴长度2a/mm | 收缩比例 | 短轴长度b1/mm | 收缩 比例 | 短轴长度b2/mm | 收缩 比例 | |||
|---|---|---|---|---|---|---|---|---|---|
| 虚拟区域 | 实验区域 | 虚拟区域 | 实验区域 | 虚拟区域 | 实验区域 | ||||
| 1 | 6.824 | 4.903 | 0.719 | 1.187 | 0.566 | 0.476 | 0.548 | 0.266 | 0.486 |
| 2 | 3.556 | 2.561 | 0.720 | 1.448 | 0.721 | 0.498 | 0.692 | 0.332 | 0.479 |
| 3 | 5.231 | 3.732 | 0.714 | 3.688 | 1.814 | 0.492 | 1.657 | 0.841 | 0.508 |
| 4 | 3.980 | 2.685 | 0.675 | 0.545 | 0.274 | 0.503 | 0.260 | 0.130 | 0.498 |
| 5 | 5.600 | 3.829 | 0.684 | 2.734 | 1.368 | 0.501 | 1.074 | 0.534 | 0.497 |
| 6 | 6.080 | 4.182 | 0.688 | 1.352 | 0.687 | 0.508 | 0.643 | 0.331 | 0.514 |
| 7 | 4.996 | 3.532 | 0.707 | 0.806 | 0.409 | 0.507 | 0.417 | 0.210 | 0.502 |
| 8 | 4.308 | 2.915 | 0.677 | 0.935 | 0.454 | 0.486 | 0.466 | 0.234 | 0.503 |
| 9 | 3.073 | 2.180 | 0.709 | 0.533 | 0.266 | 0.500 | 0.197 | 0.101 | 0.512 |
Tab.2 Contraction ratio of major and minor axes in orthogonal experiment
实 验 次 数 | 长轴长度2a/mm | 收缩比例 | 短轴长度b1/mm | 收缩 比例 | 短轴长度b2/mm | 收缩 比例 | |||
|---|---|---|---|---|---|---|---|---|---|
| 虚拟区域 | 实验区域 | 虚拟区域 | 实验区域 | 虚拟区域 | 实验区域 | ||||
| 1 | 6.824 | 4.903 | 0.719 | 1.187 | 0.566 | 0.476 | 0.548 | 0.266 | 0.486 |
| 2 | 3.556 | 2.561 | 0.720 | 1.448 | 0.721 | 0.498 | 0.692 | 0.332 | 0.479 |
| 3 | 5.231 | 3.732 | 0.714 | 3.688 | 1.814 | 0.492 | 1.657 | 0.841 | 0.508 |
| 4 | 3.980 | 2.685 | 0.675 | 0.545 | 0.274 | 0.503 | 0.260 | 0.130 | 0.498 |
| 5 | 5.600 | 3.829 | 0.684 | 2.734 | 1.368 | 0.501 | 1.074 | 0.534 | 0.497 |
| 6 | 6.080 | 4.182 | 0.688 | 1.352 | 0.687 | 0.508 | 0.643 | 0.331 | 0.514 |
| 7 | 4.996 | 3.532 | 0.707 | 0.806 | 0.409 | 0.507 | 0.417 | 0.210 | 0.502 |
| 8 | 4.308 | 2.915 | 0.677 | 0.935 | 0.454 | 0.486 | 0.466 | 0.234 | 0.503 |
| 9 | 3.073 | 2.180 | 0.709 | 0.533 | 0.266 | 0.500 | 0.197 | 0.101 | 0.512 |
实验 序号 | 抛光接触 位置 | 海绵砂圈 半径R/mm | 压缩量 ap/mm | 接触区域 面积S/mm2 | 法向抛光力F/N |
|---|---|---|---|---|---|
| 1 | 1 | 6 | 0.15 | 0.7388 | 2.4826 |
| 2 | 2 | 1.4953 | 4.4497 | ||
| 3 | 3 | 3.0287 | 7.9805 | ||
| 4 | 1 | 0.2 | 0.9730 | 3.4378 | |
| 5 | 2 | 2.0270 | 6.3109 | ||
| 6 | 3 | 4.1216 | 11.3551 | ||
| 7 | 1 | 0.25 | 1.2023 | 4.4182 | |
| 8 | 2 | 2.5781 | 8.3068 | ||
| 9 | 3 | 5.3936 | 15.3027 | ||
| 10 | 1 | 0.3 | 1.4341 | 5.4386 | |
| 11 | 2 | 3.1394 | 10.4020 | ||
| 12 | 3 | 7.1964 | 20.6680 | ||
| 13 | 1 | 8 | 0.15 | 0.8544 | 1.8803 |
| 14 | 2 | 1.7294 | 3.3705 | ||
| 15 | 3 | 3.5028 | 6.0449 | ||
| 16 | 1 | 0.2 | 1.1259 | 2.6051 | |
| 17 | 2 | 2.3455 | 4.7823 | ||
| 18 | 3 | 4.7693 | 8.6048 | ||
| 19 | 1 | 0.25 | 1.3920 | 3.3496 | |
| 20 | 2 | 2.9848 | 6.2976 | ||
| 21 | 3 | 6.2445 | 11.6013 | ||
| 22 | 1 | 0.3 | 1.6613 | 4.1251 | |
| 23 | 2 | 3.6367 | 7.8896 | ||
| 24 | 3 | 8.3363 | 15.6760 | ||
| 25 | 1 | 10 | 0.15 | 0.9563 | 1.5157 |
| 26 | 2 | 1.9353 | 2.7165 | ||
| 27 | 3 | 3.9199 | 4.8720 | ||
| 28 | 1 | 0.2 | 1.2603 | 2.1001 | |
| 29 | 2 | 2.6257 | 3.8555 | ||
| 30 | 3 | 5.3389 | 6.9370 | ||
| 31 | 1 | 0.25 | 1.5588 | 2.7011 | |
| 32 | 2 | 3.3424 | 5.0784 | ||
| 33 | 3 | 6.9926 | 9.3553 | ||
| 34 | 1 | 0.3 | 1.8573 | 3.3220 | |
| 35 | 2 | 4.0737 | 6.3639 | ||
| 36 | 3 | 9.3380 | 12.6445 |
Tab.3 Normal polishing force under different process parameter combinations
实验 序号 | 抛光接触 位置 | 海绵砂圈 半径R/mm | 压缩量 ap/mm | 接触区域 面积S/mm2 | 法向抛光力F/N |
|---|---|---|---|---|---|
| 1 | 1 | 6 | 0.15 | 0.7388 | 2.4826 |
| 2 | 2 | 1.4953 | 4.4497 | ||
| 3 | 3 | 3.0287 | 7.9805 | ||
| 4 | 1 | 0.2 | 0.9730 | 3.4378 | |
| 5 | 2 | 2.0270 | 6.3109 | ||
| 6 | 3 | 4.1216 | 11.3551 | ||
| 7 | 1 | 0.25 | 1.2023 | 4.4182 | |
| 8 | 2 | 2.5781 | 8.3068 | ||
| 9 | 3 | 5.3936 | 15.3027 | ||
| 10 | 1 | 0.3 | 1.4341 | 5.4386 | |
| 11 | 2 | 3.1394 | 10.4020 | ||
| 12 | 3 | 7.1964 | 20.6680 | ||
| 13 | 1 | 8 | 0.15 | 0.8544 | 1.8803 |
| 14 | 2 | 1.7294 | 3.3705 | ||
| 15 | 3 | 3.5028 | 6.0449 | ||
| 16 | 1 | 0.2 | 1.1259 | 2.6051 | |
| 17 | 2 | 2.3455 | 4.7823 | ||
| 18 | 3 | 4.7693 | 8.6048 | ||
| 19 | 1 | 0.25 | 1.3920 | 3.3496 | |
| 20 | 2 | 2.9848 | 6.2976 | ||
| 21 | 3 | 6.2445 | 11.6013 | ||
| 22 | 1 | 0.3 | 1.6613 | 4.1251 | |
| 23 | 2 | 3.6367 | 7.8896 | ||
| 24 | 3 | 8.3363 | 15.6760 | ||
| 25 | 1 | 10 | 0.15 | 0.9563 | 1.5157 |
| 26 | 2 | 1.9353 | 2.7165 | ||
| 27 | 3 | 3.9199 | 4.8720 | ||
| 28 | 1 | 0.2 | 1.2603 | 2.1001 | |
| 29 | 2 | 2.6257 | 3.8555 | ||
| 30 | 3 | 5.3389 | 6.9370 | ||
| 31 | 1 | 0.25 | 1.5588 | 2.7011 | |
| 32 | 2 | 3.3424 | 5.0784 | ||
| 33 | 3 | 6.9926 | 9.3553 | ||
| 34 | 1 | 0.3 | 1.8573 | 3.3220 | |
| 35 | 2 | 4.0737 | 6.3639 | ||
| 36 | 3 | 9.3380 | 12.6445 |
序 号 | 压缩量ap/mm | 主轴 转速 ω/(r·min | 接触 面积 S/mm2 | 粒度P# | 进给速度 vf /(mm·min | 去除深度 h(0)/μm | 系数c | Preston系数K1 |
|---|---|---|---|---|---|---|---|---|
| 1 | 0.2 | 3000 | 0.614 | 3000 | 250 | 0.31 | 263.378 | |
| 2 | 0.2 | 4000 | 0.614 | 5000 | 250 | 0.20 | ||
| 3 | 0.2 | 5000 | 0.614 | 3000 | 250 | 0.49 | ||
| 4 | 0.2 | 6000 | 0.614 | 5000 | 250 | 0.30 |
Tab.4 Experimental parameters for Preston coefficient calibration
序 号 | 压缩量ap/mm | 主轴 转速 ω/(r·min | 接触 面积 S/mm2 | 粒度P# | 进给速度 vf /(mm·min | 去除深度 h(0)/μm | 系数c | Preston系数K1 |
|---|---|---|---|---|---|---|---|---|
| 1 | 0.2 | 3000 | 0.614 | 3000 | 250 | 0.31 | 263.378 | |
| 2 | 0.2 | 4000 | 0.614 | 5000 | 250 | 0.20 | ||
| 3 | 0.2 | 5000 | 0.614 | 3000 | 250 | 0.49 | ||
| 4 | 0.2 | 6000 | 0.614 | 5000 | 250 | 0.30 |
| 序号 | 压缩量 ap /mm | 进给速度 vf/(mm·min | 主轴转速 ω/(r·min | 磨具 粒度P# | 海绵 砂圈 半径 R/mm | 工件 半径 Rm/mm |
|---|---|---|---|---|---|---|
| 1 | 0.15 | 250 | 5000 | 5000 | 10 | 0.3 |
| 2 | 0.15 | 350 | 7000 | 5000 | 10 | 0.3 |
| 3 | 0.25 | 250 | 7000 | 5000 | 10 | 0.3 |
| 4 | 0.25 | 350 | 5000 | 5000 | 10 | 0.3 |
Tab.5 Process parameters for material removal profile height verification experiment
| 序号 | 压缩量 ap /mm | 进给速度 vf/(mm·min | 主轴转速 ω/(r·min | 磨具 粒度P# | 海绵 砂圈 半径 R/mm | 工件 半径 Rm/mm |
|---|---|---|---|---|---|---|
| 1 | 0.15 | 250 | 5000 | 5000 | 10 | 0.3 |
| 2 | 0.15 | 350 | 7000 | 5000 | 10 | 0.3 |
| 3 | 0.25 | 250 | 7000 | 5000 | 10 | 0.3 |
| 4 | 0.25 | 350 | 5000 | 5000 | 10 | 0.3 |
序 号 | 压缩量ap/mm | 进给速度vf/ (mm·min | 主轴转速 ω/(r·min | 磨具 粒度 P# | 海绵砂圈半径 R/mm |
|---|---|---|---|---|---|
| 1 | 0.15,0.20,0.25 | 300 | 5000 | 5000 | 10 |
| 2 | 0.2 | 250,300,350 | 5000 | 5000 | 10 |
| 3 | 0.2 | 300 | 3000,5000,7000 | 5000 | 10 |
| 4 | 0.2 | 300 | 5000 | 3000,5000 | 10 |
| 5 | 0.2 | 300 | 5000 | 5000 | 6,8,10 |
Tab.6 Simulation parameters
序 号 | 压缩量ap/mm | 进给速度vf/ (mm·min | 主轴转速 ω/(r·min | 磨具 粒度 P# | 海绵砂圈半径 R/mm |
|---|---|---|---|---|---|
| 1 | 0.15,0.20,0.25 | 300 | 5000 | 5000 | 10 |
| 2 | 0.2 | 250,300,350 | 5000 | 5000 | 10 |
| 3 | 0.2 | 300 | 3000,5000,7000 | 5000 | 10 |
| 4 | 0.2 | 300 | 5000 | 3000,5000 | 10 |
| 5 | 0.2 | 300 | 5000 | 5000 | 6,8,10 |
| [1] | 黄春峰. 航空发动机整体叶盘结构及发展趋势[J]. 现代零部件, 2005(4): 96-98. |
| Huang Chunfeng. Integrated Blisk Structure of Aero-engines and Its Development Trends [J]. Modern Components, 2005(4): 96-98. | |
| [2] | 傅国如, 禹泽民, 王洪伟. 航空涡喷发动机压气机转子叶片常见失效模式的特点与规律[J]. 失效分析与预防, 2006(1): 18-24. |
| FU Guoru, YU Zheming, WANG Hongwei. Main Failure Attributes and Rule of Compressor-blades in Aero-engines[J]. Failure Analysis and Prevention, 2006(1): 18-24. | |
| [3] | 孙智君, 刘荣, 刘国良. 压气机转子叶片掉块断裂分析[J]. 理化检验(物理分册), 2016, 52(12): 878-883. |
| SUN Zhijun, LIU Rong, LIU Guoliang.Fracture Analysis on Compressor Rotor Blades[J]. Physical Testing and Chemical Analysis Part A:Physical Testing,2016, 52(12): 878-883. | |
| [4] | SUDER K L, CHIMA R V, STRAZISAR A J, et al. The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor Rotor[J]. Journal of Turbomachinery-transactions of the ASME, 1995, 117(4): 491-505. |
| [5] | 赵四辈. GH4037合金Ⅰ级涡轮叶片断裂失效分析[J]. 失效分析与预防, 2007(4): 31-34. |
| ZHAO Sibei.Rupture Failure Analysis of GH4169 Stage Ⅰ Turbo Blade[J]. Failure Analysis and Prevention, 2007(4): 31-34. | |
| [6] | 王小东,杨骞,程圣,等.航发叶片磨抛工艺分析与经济性评价[J].制造技术与机床,2024(8):26-31. |
| WAN Xiaodong, YANG Jian, CHENG Shenget al.Process Analysis and Economic Evaluation of Aero-engine Blade Grinding and Polishing[J] Manufacturing Technology & Machine Tool,2024 (8):26-31. | |
| [7] | 黄云.砂带磨削技术的研究现状和发展方向简介[J].金刚石与磨料磨具工程,2020,40(3):1-4. |
| HUANG Yun. An Overview of the Current Research and Future Trends in Abrasive Belt Grinding Technology[J].Diamond & Abrasive Engineering,2020,40(3):1-4. | |
| [8] | 段继豪,史耀耀,张军锋,等.航空发动机叶片柔性抛光技术[J].航空学报,2012,33(3):573-578. |
| DUAN Jihao, SHI Yaoyao, ZHANG Junfeng, et al. Compliant Polishing Technology for Aero-engine Blades[J]. Acta Aeronautica et Astronautica Sinica,2012,33(3):573-578. | |
| [9] | ZHANG Y, LIN X J, SHI Y Y, et al. Effect of Relative Feeding Direction on Surface Texture in Abrasive Cloth Flap Wheel Polishing Process[J]. International Journal of Advanced Manufacturing Technology, 2023, 124(1/2): 79-96. |
| [10] | YANG M Y, LEE H. Local Material Removal Mechanism Considering Curvature Effect in the Polishing Process of the Small Aspherical Lens Die[J]. Journal of Materials Processing Technology, 2001, 116(2/3): 298-304. |
| [11] | WU S H, KAZEROUNIAN K, GAN Z X,et al.A Material Removal Model for Robotic Belt Grinding Process[J]. Machining Science and Technology, 2014, 18(1): 15-30. |
| [12] | 张军锋, 吴晓君, 史耀耀, 等. 基于Hertz接触理论的整体叶盘百页轮抛光材料去除深度建模研究[J]. 中国机械工程, 2023, 34(6): 668-676. |
| ZHANG Junfeng, WU Xiaojun, SHI Yaoyao, et al.Study on Modeling of Material Removal Depth for Blisk Polishing by ABFW Based on Hertz Contact Theory[J]. China Mechanical Engineering,2023, 34(6): 668-676. | |
| [13] | 周佳仪. 几种非赫兹轮轨滚动接触模型的对比研究[D].成都:西南交通大学, 2022. |
| ZHOU Jiayi. Comparative Study of Non-hertzian Wheel-rail Rolling Contact Models[D]. Chengdu:Southwest Jiaotong University,2022. | |
| [14] | 郭元春,蒋永锋,冀永强.高等数学[M].西安:西北大学出版社,2024. |
| GUO Yuanchun, JIANG Yongfeng, JI Yongqiang. Advanced Mathematics[M]. Xi'an:Northwest University Press, 2024. | |
| [15] | 张雷,袁楚明,周祖德,等.模具曲面抛光时表面去除的建模与试验研究[J]. 机械工程学报, 2002,38(12): 98-102. |
| ZHANG Lei, YUAN Chuming, ZHOU Zude,et al.Modeling and Experimental Study on Surface Material Removal in Curved Mold Polishing[J]. Journal of Mechanical Engineering,2002,38(12): 98-102 |
| [1] | Zihao YANG, Zenghua FAN, Xiang ZHANG, Jun GAO. Research on Chemical-assisted Magnetorheological Shear Thickening Polishing of Titanium Alloy Tube Inner Surfaces [J]. China Mechanical Engineering, 2025, 36(12): 2846-2853. |
| [2] | Wenqian LI, Zhanqiang LIU, Jinfu ZHAO, Bing WANG, Yukui CAI. Nanosecond Laser Machining of Spiral Grooves of Dry Gas Seal Rotational Ring Surfaces [J]. China Mechanical Engineering, 2025, 36(10): 2207-2214. |
| [3] | Shanshan LI, Xingwei SUN, Heng YANG, Heting QIAO. Research on Nonlinear Wear Behavior of Sealing Pairs in Magnetorheological Fluid Environment [J]. China Mechanical Engineering, 2025, 36(09): 1968-1979. |
| [4] | YANG Haotian1, HE Wenbo1, 2, 3, ZHAO Guolong1, NIAN Zhiwen1, YANG Yinfei1, 2, 3, LI Liang1. Drilling Characteristics of Micro Holes on Cf/SiC Composites [J]. China Mechanical Engineering, 2025, 36(07): 1600-1610. |
| [5] | LUO Chenyang1, 2, GUO Lei1, 2, CAO Chuqing2, CAO Leilei3, SHI Pengfei1, 2. Grinding and Polishing Mechanism of Hard and Brittle Materials under Cooperation of Fixed and Free Abrasive Grains [J]. China Mechanical Engineering, 2025, 36(06): 1159-1169,1177. |
| [6] | ZHANG Chao1, REN Yinghui1, 2, YU Xiaolin1, LI Maojun2, YU Chengyang2, DU Xinliang1. Material Removal Mechanism of CFRP in Longitudinal-torsional Ultrasonic Milling Based on Mesoscopic Simulation Model [J]. China Mechanical Engineering, 2025, 36(04): 760-769,779. |
| [7] | YANG Heran1, 2, ZHANG Peijie1, 2, SUN Xingwei1, 2, PAN Fei1, 2, LIU Yin1, 2. Surface Roughness Prediction for Screw Belt Grinding Based on Improved CNN [J]. China Mechanical Engineering, 2025, 36(02): 325-332. |
| [8] | YAN Wei1, 3, WANG Xinyi2, 3, ZHANG Hua3, ZHU Shuo2, 3, JIANG Zhigang2, 3. Optimization Decision of CFRP Processing Parameters Considering Cutting Energy Consumption and Surface Quality [J]. China Mechanical Engineering, 2024, 35(10): 1834-1844. |
| [9] | XU Chengyu, ZHANG Wanyi, ZHANG Tianhong, ZHU Yongwei. Experimental Study of Figuring and Polishing of Titanium Alloy Blades with Fixed Abrasive Tools [J]. China Mechanical Engineering, 2024, 35(09): 1606-1612. |
| [10] | JIN Minglei1, 2, JIN Mingsheng1, 2, SONG Zhengjiang3, ZENG Xi1, 2, LI Yan1, 2, TANG Xuan1, 2. Material Removal Model of Center-inlet Elastic Polishing Tools [J]. China Mechanical Engineering, 2024, 35(09): 1659-1666. |
| [11] | JIN Qichao1, 2, BAO Huzi1, LI Liangwan3, WANG Wenhu3, ZHANG Jinqi1, YE Ziyin1, GUO Lei1. Research on Influences of Surface Roughness and Hardening Rate on Fatigue Property in DD5 Creep Feed Grinding [J]. China Mechanical Engineering, 2024, 35(08): 1472-1479. |
| [12] | ZHANG Lifeng, WANG Zixu, ZHANG Wangtong, DENG Yunfei, SUI He, GUO Zhiyong. Contrastive Experiments on Up and Down Grinding of Unidirectional Ceramic Matrix Composite C/SiC with Variable Angle [J]. China Mechanical Engineering, 2024, 35(02): 235-243. |
| [13] | ZHANG Qicong, JIANG Chen, YE Hui, SHEN Lingxin, JIAO Mengdie. Design and Processing Research of Dynamic Pressure Assisted Non-Newtonian Fluid Polishing Tools [J]. China Mechanical Engineering, 2023, 34(23): 2805-2811,2823. |
| [14] | JIA Zhixin, ZHANG Kaiyue, WANG Jin. Study on EDM of PCD by Mixing Iron Powders [J]. China Mechanical Engineering, 2023, 34(22): 2684-2692. |
| [15] | ZHANG Lifeng, ZHANG Xiaoguang. Machining Performance and Material Removal Mechanism of High-speed Milling of CFRP with Variable Angle under Minimal Quantity Lubrication [J]. China Mechanical Engineering, 2023, 34(21): 2622-2628. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||