China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (12): 2885-2893.DOI: 10.3969/j.issn.1004-132X.2025.12.010

Previous Articles    

Design and Kinematics Modeling of Extensible Snake-like Manipulators

Xuhao WANG1(), Wolong SHENG1, Mengli WU1(), Yilong XU1, Xiaowei ZHAO2,3, Yiran CAO1   

  1. 1.College of Aeronautical Engineering,Civil Aviation University of China,Tianjin,300300
    2.School of Mechanical Engineering,Tianjin University,Tianjin,300350
    3.Beiyang Intelligent Control (Tianjin) Technology Co. ,Ltd. ,Tianjin,300450
  • Received:2024-11-13 Online:2025-12-25 Published:2025-12-31
  • Contact: Mengli WU

可伸缩蛇形臂机器人的设计及运动学建模

王旭浩1(), 盛卧龙1, 吴孟丽1(), 许贻龙1, 赵晓巍2,3, 曹轶然1   

  1. 1.中国民航大学航空工程学院, 天津, 300300
    2.天津大学机械工程学院, 天津, 300350
    3.北洋智控(天津)科技有限公司, 天津, 300450
  • 通讯作者: 吴孟丽
  • 作者简介:王旭浩,男,1989年生,博士,讲师。研究方向为机器人机构学和民航特种智能装备。E-mail:xh_wang@cauc.edu.cn
  • 基金资助:
    天津市自然科学基金多元投入项目(23JCQNJC00140);中央高校基本科研业务费专项资金(3122024051)

Abstract:

A novel snake-like manipulator was proposed, the modular joints of the manipulator were designed with an active extensible degree of freedom, which increased the overall motion flexibility and adaptability in complex spaces. Kinematics modeling of the snake-like manipulators was carried out. The mappings among actuator space, joint space and end task space were analyzed. Considering the characteristics of the extensible joints, two novel joint-end inverse kinematics algorithms were proposed, i.e. the integrated method by combing the conventional FABRIK algorithm with Jacobian-based iterative algorithm, and the modified FABRIK algorithm with iteratively updated link lengths. Numerical simulations were conducted to verify computational accuracy and efficiency. The results show that both methods have better accuracy, while the modified FABRIK algorithm has higher computational efficiency. Finally, a prototype was constructed, and experiments were carried out to validate motion capabilities of the proposed snake-like manipulators.

Key words: snake-like manipulator, structure design, inverse kinematics, improved FABRIK algorithm, experimental validation

摘要:

提出一种新型蛇形臂机器人,该机器人模块化关节具有主动的可伸缩自由度,增加了整机运动的灵活性和复杂空间适应能力。建立了蛇形臂机器人的运动学模型,分析了驱动空间、关节空间与末端操作空间的映射关系。针对关节具有伸缩自由度的构型特点,提出了两种关节-末端逆运动学算法,即结合传统FABRIK算法与基于雅可比矩阵迭代法的组合算法、杆长迭代更新的改进FABRIK算法。为了验证两种算法的计算精度和效率,进行了数值仿真对比,结果表明两种算法均具有良好的运算精度,改进的FABRIK算法具有更高的运算效率。最后搭建了物理样机并开展了实验验证,证明了所提出蛇形臂机器人具有良好的弯曲性能和伸缩运动性能。

关键词: 蛇形臂机器人, 结构设计, 逆运动学, 改进FABRIK算法, 实验验证

CLC Number: