China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (11): 2720-2727.DOI: 10.3969/j.issn.1004-132X.2025.11.030
Song ZHANG1(
), Chaoyong ZHANG1,2, Chuanjun ZHU1(
), Saixiyalatu BAO2
Received:2024-11-25
Online:2025-11-25
Published:2025-12-09
Contact:
Chuanjun ZHU
通讯作者:
朱传军
作者简介:张松,男,2000年生,硕士研究生。研究方向为刀具磨损监测、数字孪生。E-mail:2455703165@qq.com基金资助:CLC Number:
Song ZHANG, Chaoyong ZHANG, Chuanjun ZHU, Saixiyalatu BAO. In-situ Monitoring Method of Milling Cutter Wear Based on Spatial Attention Mechanism U-Net[J]. China Mechanical Engineering, 2025, 36(11): 2720-2727.
张松, 张超勇, 朱传军, 赛希亚拉图. 基于空间注意力机制U-Net的铣刀磨损在位监测方法[J]. 中国机械工程, 2025, 36(11): 2720-2727.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.11.030
| 型号 | TD-KM-4KH | AO-HK810 |
|---|---|---|
| 分辨率/(pixel×pixel) | 3840×2160 | |
| 相元尺寸/(μm×μm) | 1.88×2.5 | 2.2×2.2 |
| 输出接口 | HDMI | HDMI、USB |
| 镜头 | 高清镜头 | 大景深镜头 |
| 视野范围/mm | 100 | 30 |
| 放大倍数 | 7~80 | 20~120 |
| 拍摄软件 | ImageView | |
Tab.1 Camera parameters
| 型号 | TD-KM-4KH | AO-HK810 |
|---|---|---|
| 分辨率/(pixel×pixel) | 3840×2160 | |
| 相元尺寸/(μm×μm) | 1.88×2.5 | 2.2×2.2 |
| 输出接口 | HDMI | HDMI、USB |
| 镜头 | 高清镜头 | 大景深镜头 |
| 视野范围/mm | 100 | 30 |
| 放大倍数 | 7~80 | 20~120 |
| 拍摄软件 | ImageView | |
| 刀具型号 | 4刃钨钢立铣刀 |
|---|---|
| 刀具硬度 | 70HRC |
| 工件材料 | H13模具钢 |
| 工件尺寸(长×宽×高)/(mm×mm×mm) | 200×100×100 |
| 切深/mm | 0.2 |
| 切宽/mm | 0.2 |
| 转速/(r·min-1) | 2500 |
| 进给速度/(mm·min-1) | 200 |
Tab.2 Cutting parameters and experimental configurations
| 刀具型号 | 4刃钨钢立铣刀 |
|---|---|
| 刀具硬度 | 70HRC |
| 工件材料 | H13模具钢 |
| 工件尺寸(长×宽×高)/(mm×mm×mm) | 200×100×100 |
| 切深/mm | 0.2 |
| 切宽/mm | 0.2 |
| 转速/(r·min-1) | 2500 |
| 进给速度/(mm·min-1) | 200 |
| 模型名称 | mIoU | mPA | RA | RR |
|---|---|---|---|---|
| U-Net | 95.22 | 97.48 | 99.88 | 95.03 |
| 改进U-Net | 95.94 | 97.97 | 99.89 | 95.99 |
| Deeplabv3+ | 91.05 | 95.67 | 99.76 | 91.47 |
| FCN | 87.82 | 96.01 | 99.74 | 81.13 |
| Lraspp | 77.69 | 90.22 | 99.41 | 64.50 |
| SegNet | 93.77 | 96.72 | 99.84 | 93.52 |
| PspNet | 90.28 | 94.27 | 99.74 | 88.66 |
Tab.3 Comparison of model results
| 模型名称 | mIoU | mPA | RA | RR |
|---|---|---|---|---|
| U-Net | 95.22 | 97.48 | 99.88 | 95.03 |
| 改进U-Net | 95.94 | 97.97 | 99.89 | 95.99 |
| Deeplabv3+ | 91.05 | 95.67 | 99.76 | 91.47 |
| FCN | 87.82 | 96.01 | 99.74 | 81.13 |
| Lraspp | 77.69 | 90.22 | 99.41 | 64.50 |
| SegNet | 93.77 | 96.72 | 99.84 | 93.52 |
| PspNet | 90.28 | 94.27 | 99.74 | 88.66 |
| [1] | 刘会永, 张松, 李剑峰,等. 采用改进CNN-BiLSTM模型的刀具磨损状态监测[J]. 中国机械工程, 2022, 33(16): 1940-1947. |
| LIU Huiyong, ZHANG Song, LI Jianfeng, et al. Tool Wear Detection Based on Improved CNN-BiLSTM Model[J]. China Mechanical Engineering, 2022, 33(16): 1940-1947. | |
| [2] | 聂鹏,杨程越,彭新月,等.采用空间和通道激励注意力机制优化ResNet-50的CFRP/TC4叠层材料钻削刀具磨损状态监测[J].中国机械工程,2024,35(10):1793-1801. |
| NIE Peng, YANG Chengyue, PENG Xinyue, et al. Tool Wear Condition Monitoring for Drilling CFRP/TC4 Laminated Materials Using scSE Optimised ResNet-50[J]. China Mechanical Engineering, 2024, 35(10): 1793-1801. | |
| [3] | JÁUREGUI J C, RESÉNDIZ J R, THENOZHI S, et al. Frequency and Time-frequency Analysis of Cutting Force and Vibration Signals for Tool Condition Monitoring[J]. IEEE Access, 2018, 6: 6400-6410. |
| [4] | 王秋莲,欧桂雄,徐雪娇,等.基于VMD-SSA-LSTM考虑刀具磨损的数控铣床切削功率预测模型研究[J].中国机械工程,2024,35(6):1052-1063. |
| WANG Qiulian, Guixiong OU, XU Xuejiao, et al. Research on Cutting Power Prediction Model of CNC Milling Machine Considering Tool Wear Based on VMD-SSA-LSTM[J]. China Mechanical Engineering, 2024, 35(6): 1052-1063. | |
| [5] | 周俊杰,余建波.基于机器视觉的加工刀具磨损量在线测量[J].上海交通大学学报,2021,55(6):741-749. |
| ZHOU Junjie, YU Jianbo. Online Measurement of Machining Tool Wear Based on Machine Vision[J]. Journal of Shanghai Jiao Tong University, 2021, 55(6): 741-749. | |
| [6] | QIN A, GUO L, YOU Z, et al. Research on Automatic Monitoring Method of Face Milling Cutter Wear Based on Dynamic Image Sequence[J].The International Journal of Advanced Manufacturing Technology,2020,110(11/12):3365-3376. |
| [7] | 程训, 余建波. 基于机器视觉的加工刀具磨损监测方法[J]. 浙江大学学报 (工学版), 2021, 55(5): 896-904. |
| CHENG Xun, YU Jianbo. Tool Wear Monitoring Method for Machining Based on Machine Vision[J]. Journal of Zhejiang University(Engineering Science), 2021, 55(5): 896-904. | |
| [8] | ZHANG J, ZHANG C, GUO S, et al. Research on Tool Wear Detection Based on Machine Vision in End Milling Process[J]. Production Engineering, 2012, 6: 431-437. |
| [9] | PENG R, PANG H, JIANG H, et al. Study of Tool Wear Monitoring Using Machine Vision[J]. Automatic Control and Computer Sciences, 2020, 54(3): 259-270. |
| [10] | 田颖, 杨利明. 基于组合型阈值分割的在线立铣刀侧刃磨损测量[J]. 天津大学学报 (自然科学与工程技术版), 2023, 56(1): 81-92. |
| TIAN Ying, YANG Liming. Online Measurement of Flank Wear of End Mills Based on Combined Threshold Segmentation[J]. Journal of Tianjin University(Science and Technology), 2023, 56(1): 81-92. | |
| [11] | 何彦,凌俊杰,王禹林,等.基于长短时记忆卷积神经网络的刀具磨损在线监测模型[J].中国机械工程,2020,31(16):1959-1967. |
| HE Yan, LING Junjie, WANG Yulin, et al. Online Monitoring Model of Tool Wear Based on Long Short-term Memory Convolutional Neural Network[J]. China Mechanical Engineering, 2020, 31(16): 1959-1967. | |
| [12] | BERGS T, HOLST C, GUPTA P, et al.Digital Image Processing with Deep Learning for Automated Cutting Tool Wear Detection[J].Procedia Manufacturing, 2020, 48: 947-958. |
| [13] | YU Y, ZHANG Y, YU J, et al.Lightweight Decoder U-net Crack Segmentation Network Based on Depthwise Separable Convolution[J].Multimedia Systems,2024, 30(5):295-295. |
| [14] | RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional Networks for Biomedical Image Segmentation[C]∥Medical Image Computing and Computer-assisted Intervention. Cham: Springer International Publishing, 2015: 234-241. |
| [15] | SUN Y, GENG S, GUO H, et al. A Strip Steel Surface Defect Salient Object Detection Based on Channel, Spatial and Self-attention Mechanisms[J]. Electronics, 2024, 13(21): 4277. |
| [1] | LIANG Zhiqiang1, 2, CHEN Sichen1, DU Yuchao1, LIU Baolong1, 2, GAO Zirui1, YUE Yi3, XIAO Yubin4, ZHENG Haoran1, QIU Tianyang1, LIU Zhibing1. Chatter Identification Method for Heavy-duty Robotic Milling Systems Based on Variational Mode Filtering and Attention Mechanism [J]. China Mechanical Engineering, 2025, 36(05): 1018-1027,1073. |
| [2] | NIE Peng1, YANG Chengyue1, PENG Xinyue1, YU Jiahe2, PAN Wujiu1. Tool Wear Condition Monitoring for Drilling CFRP/TC4 Laminated Materials Using scSE Optimised ResNet-50 [J]. China Mechanical Engineering, 2024, 35(10): 1793-1801. |
| [3] | NA Yiming1, HU Chao1, QIU Yeyu2, LU Libing2, SONG Kai1. Three-dimensional Positioning Guidance of Automobile Doors Based on Machine Vision [J]. China Mechanical Engineering, 2024, 35(09): 1677-1687. |
| [4] | ZOU Xiaoyu1, 3, SUN Guoqing1, WANG Zhongbin1, 3, PAN Jie2, LIU Xinhua1, 3, LI Xin1, 3. Bearing Fault Diagnosis of Mining Drilling Rig with Time-frequency-fused Deep Network [J]. China Mechanical Engineering, 2024, 35(08): 1405-1413,1448. |
| [5] | DAI Jiabin, ZHANG Jie, WU Lihui. A Wafer Cycle Processing Time Prediction Method Incorporating Double Attention Mechanism and Parallel GRU [J]. China Mechanical Engineering, 2023, 34(14): 1640-1646. |
| [6] | SHI Qingqing, ZHANG Runfeng, ZHANG Lianhong, , LAN Shiquan, . Research on Underwater Gliders Path Tracking Based on Reinforcement Learning Algorithm [J]. China Mechanical Engineering, 2023, 34(09): 1100-1110. |
| [7] | FANG Yuntao, WANG Xiaodong, XU Song, WANG Huibin, LUO Yi, . Miniature Thread Pairs Automatic Assembly System for Gimbals [J]. China Mechanical Engineering, 2022, 33(06): 698-706. |
| [8] | YU Haoshuai, TANG Baoping, ZHANG Kai, TAN Qian, WEI Jing. Fault Diagnosis Method of Wind Turbine Gearboxes Mixed with Attention Prototype Networks under Small Samples [J]. China Mechanical Engineering, 2021, 32(20): 2475-2481. |
| [9] | YI Huaian, ZHAO Xinjia, TANG Le, CHEN Yonglun. Vision Measurement Method for Ground Surface Roughness Based on Color Image Singular Value Entropy Index#br# [J]. China Mechanical Engineering, 2021, 32(13): 1577-1583. |
| [10] | HE Qiang, TANG Xianghong, LI Chuanjiang, LU Jianguang, CHEN Jiadui. Bearing Fault Diagnosis Method Based on Small Sample Data under Unbalanced Loads#br# [J]. China Mechanical Engineering, 2021, 32(10): 1164-1171,1180. |
| [11] |
LI Maoyue;LYU Hongyu;WANG Fei;JIA Dongkai.
An Intelligent Vehicle Robust Lane Line Identification Method Based on Machine Vision
[J]. China Mechanical Engineering, 2021, 32(02): 242-251.
|
| [12] | LI Feng1;CHENG Yangyang1,2;CHEN Yong1;TANG Baoping3. QAREDNN for State Trend Prediction of Rotating Machinery [J]. China Mechanical Engineering, 2020, 31(21): 2573-2582. |
| [13] | HE Yan1;LING Junjie1;WANG Yulin2;LI Yufeng1;WU Pengcheng1;XIAO Zhen1. In-process Tool Wear Monitoring Model Based on LSTM-CNN [J]. China Mechanical Engineering, 2020, 31(16): 1959-1967. |
| [14] | YU Shilong, BAO Jinsong, LI Jie, ZHANG Qihua. Wafer Manufacturing Data Anomaly Detection Based on Error Attention [J]. China Mechanical Engineering, 2020, 31(14): 1686-1692. |
| [15] | WANG Zegang;WANG FujiLU Xiaohong;ZHAO Meng;FAN Junfeng. Research on CFRP Milling Considering Continuity of Left-handed Cutting Edges [J]. China Mechanical Engineering, 2020, 31(08): 991-996. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||