China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (10): 2179-2189.DOI: 10.3969/j.issn.1004-132X.2025.10.003
Tianyu MA1,2(
), Gu GONG1,2, Hongrui CAO1,2(
), Jianghai SHI1,2, Xunkai WEI3, Lijun ZHANG4
Received:2024-09-29
Online:2025-10-25
Published:2025-11-05
Contact:
Hongrui CAO
马天宇1,2(
), 巩固1,2, 曹宏瑞1,2(
), 史江海1,2, 尉询楷3, 章立军4
通讯作者:
曹宏瑞
作者简介:马天宇,男,1996年生,博士研究生。研究方向为航空发动机轴承微观损伤机理。E-mail:matianyu@stu.xjtu.edu.cn基金资助:CLC Number:
Tianyu MA, Gu GONG, Hongrui CAO, Jianghai SHI, Xunkai WEI, Lijun ZHANG. Molecular Dynamics Simulation of Microscopic Crack Initiation and Extension Mechanism in 8Cr4Mo4V Bearing Steels[J]. China Mechanical Engineering, 2025, 36(10): 2179-2189.
马天宇, 巩固, 曹宏瑞, 史江海, 尉询楷, 章立军. 8Cr4Mo4V轴承钢微观裂纹萌生与扩展机制的分子动力学模拟[J]. 中国机械工程, 2025, 36(10): 2179-2189.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.10.003
| 弹性常数 | 势函数计算值/GPa | 实验值[ | 相对误差 |
|---|---|---|---|
| C11 | 244.3 | 230.0 | 6.2% |
| C12 | 145.3 | 135.0 | 7.6% |
| C44 | 116.3 | 117.0 |
Tab.1 Comparison of bcc-Fe elastic constant calculation and experimental values
| 弹性常数 | 势函数计算值/GPa | 实验值[ | 相对误差 |
|---|---|---|---|
| C11 | 244.3 | 230.0 | 6.2% |
| C12 | 145.3 | 135.0 | 7.6% |
| C44 | 116.3 | 117.0 |
| 弹性常数 | 势函数计算值/GPa | DFT值[ | 相对误差 |
|---|---|---|---|
| C11 | 383.4 | 388 | |
| C22 | 349.5 | 345 | 1.3% |
| C33 | 304.5 | 322 | |
| C44 | 45.3 | 15 | |
| C55 | 125.8 | 134 | |
| C66 | 118.6 | 134 | |
| C12 | 129.0 | 156 | |
| C13 | 155.1 | 164 | |
| C23 | 156.2 | 162 |
Tab.2 Comparison between calculated elastic constants of cementite and DFT values
| 弹性常数 | 势函数计算值/GPa | DFT值[ | 相对误差 |
|---|---|---|---|
| C11 | 383.4 | 388 | |
| C22 | 349.5 | 345 | 1.3% |
| C33 | 304.5 | 322 | |
| C44 | 45.3 | 15 | |
| C55 | 125.8 | 134 | |
| C66 | 118.6 | 134 | |
| C12 | 129.0 | 156 | |
| C13 | 155.1 | 164 | |
| C23 | 156.2 | 162 |
| 模型 | 损伤应力/ GPa | 损伤位移/ nm | 临界断裂能/ (N·m-1) | 初始损伤刚度/ (N·μm-3) |
|---|---|---|---|---|
| 1 | 10.5986 | 0.134 37 | 5.906 | 78.876 237 26 |
| 2 | 11.0262 | 0.179 930 | 9.914 | 61.280 497 97 |
| 3 | 12.5011 | 0.184 474 | 7.488 | 67.766 189 27 |
Tab.3 Cohesive parameters of three twin crystal models
| 模型 | 损伤应力/ GPa | 损伤位移/ nm | 临界断裂能/ (N·m-1) | 初始损伤刚度/ (N·μm-3) |
|---|---|---|---|---|
| 1 | 10.5986 | 0.134 37 | 5.906 | 78.876 237 26 |
| 2 | 11.0262 | 0.179 930 | 9.914 | 61.280 497 97 |
| 3 | 12.5011 | 0.184 474 | 7.488 | 67.766 189 27 |
晶界错向角 α/(°) | 损伤应力 Tmax/GPa | 临界断裂能 GIC/(N·m-1) |
|---|---|---|
| 10 | 10.3133 | 6.464 |
| 15 | 10.3974 | 9.632 |
| 20 | 9.258 55 | 8.299 |
| 25 | 10.4863 | 9.100 |
| 30 | 10.2065 | 9.384 |
| 35 | 11.0262 | 9.914 |
| 40 | 11.5953 | 10.851 |
Tab.4 Cohesive parameters of three twin crystal models
晶界错向角 α/(°) | 损伤应力 Tmax/GPa | 临界断裂能 GIC/(N·m-1) |
|---|---|---|
| 10 | 10.3133 | 6.464 |
| 15 | 10.3974 | 9.632 |
| 20 | 9.258 55 | 8.299 |
| 25 | 10.4863 | 9.100 |
| 30 | 10.2065 | 9.384 |
| 35 | 11.0262 | 9.914 |
| 40 | 11.5953 | 10.851 |
| [1] | BHADESHIA H K D H. Steels for Bearings[J]. Progress in Materials Science, 2012, 57 (2):268-435. |
| [2] | PANDKAR A S, ARAKERE N, SUBHASH G. Microstructure-sensitive Accumulation of Plastic Strain due to Ratcheting in Bearing Steels Subject to Rolling Contact Fatigue[J]. International Journal of Fatigue, 2014, 63:191-202. |
| [3] | XU Funing, DING Ning, LI Nan, et al. A Review of Bearing Failure Modes, Mechanisms and Causes [J]. Engineering Failure Analysis, 2023, 152:107518. |
| [4] | YUE Xiong, HU Shan, WANG Xiaokang, et al. Understanding the Nanostructure Evolution and the Mechanical Strengthening of the M50 Bearing Steel during Ultrasonic Shot Peening[J]. Materials Science and Engineering A—Structural Materials Properties Microstructure and Processing, 2022, 836:142721. |
| [5] | 孙玉凤, 刘伟军, 张宏伟, 等. 8Cr4Mo4V钢激光冲击残余应力的演化仿真及其对疲劳性能的影响 [J]. 材料研究学报, 2023, 37 (12):933-942. |
| SUN Yufeng, LIU Weijun, ZHANG Hongwei, et al. Simulation of Residual Stress Evolution of 8Cr4Mo4V Steel Induced by Laser Shock and Its Influence on Faticue Performance [J]. Chinese Journal of Materials Research, 2023, 37 (12):933-942. | |
| [6] | YANG Liqi, XUE Weihai, GAO Siyang, et al. Rolling Contact Fatigue Behavior of M50 Bearing Steel with Rare Earth Addition [J]. International Journal of Fatigue, 2023, 177:107940. |
| [7] | GUO Wei, MA Tianyu, CAO Hongrui, et al. Numerical Analysis of Rolling Contact Fatigue Crack Initiation Considering Material Microstructure [J]. Engineering Failure Analysis, 2022, 138:106394. |
| [8] | LIU Yazhou, LUO Yun, SU Shuo, et al. Molecular Dynamics Simulation of Phase Transition and Crack Propagation in Metastable High Entropy Alloy [J]. Materials Today Communications, 2022, 33:104642. |
| [9] | MOLAEI F. Molecular Dynamics Simulation of Edge Crack Propagation in Single Crystalline Alpha Quartz[J]. Journal of Molecular Graphics & Modelling, 2022, 111:108085. |
| [10] | XING Zheyuan, FAN Haidong, KANG Guozheng. Molecular Dynamics Simulations on the Intergranular Crack Propagation of Magnesium Bicrystals[J]. Computational Materials Science, 2022, 210:111058. |
| [11] | MA Lei, XIAO Shifang, DENG Huiqiu, et al. Molecular Dynamics Simulation of Fatigue Crack Propagation in bcc Iron under Cyclic Loading[J]. International Journal of Fatigue,2014, 68:253-259. |
| [12] | 曹莉霞, 王崇愚. α-Fe裂纹的分子动力学研究[J]. 物理学报, 2007(1):413-422. |
| CAO Lixia, WANG Chongyu. Molecular Dynamics Simulation of Fracture in α-iron[J]. Acta Physica Sinica, 2007 (1):413-422. | |
| [13] | GHAFFARIAN H, TAHERI A K, KANG K, et al. Molecular Dynamics Simulation Study of the Effect of Temperature and Grain Size on the Deformation Behavior of Polycrystalline Cementite[J]. Scripta Materialia, 2015, 95:23-26. |
| [14] | NAKAMURA K, KUMAGAI T, OHNUMA T. Atomistic Simulation of Shear Deformation at bcc-Fe Grain Boundary and Precipitation Strengthening by Cr23C6 [J]. Materials Today Communications, 2022, 33:104711. |
| [15] | PLIMPTON S. Fast Parallel Algorithms for Short-range Molecular-dynamics[J]. Journal of Computational Physics,1995, 117 (1):1-19. |
| [16] | STUKOWSKI A. Visualization and Analysis of Atomistic Simulation Data with Ovito—the open Visualization Tool[J]. Modelling and Simulation in Materials Science and Engineering, 2009, 18(1):015012. |
| [17] | MENDELEV M I, HAN S, SROLOVITZ D J, et al. Development of New Interatomic Potentials Appropriate for Crystalline and Liquid Iron[J]. Philosophical Magazine,2003, 83 (35):3977-3994. |
| [18] | HENRIKSSON K O E, BJÖRKAS C, NORDLUND K. Atomistic Simulations of Stainless Steels:a Many-body potential for the Fe-Cr-C System[J]. Journal of Physics-condensed Matter, 2013, 25(44):445401. |
| [19] | LEE B J, BASKES M. Second Nearest-neighbor Modified Embedded-atom-method Potential[J]. Physical Review B,2000, 62 (13):8564-8567. |
| [20] | JIANG C, SRINIVASAN S G, CARO A, et al. Structural, Elastic and Electronic Properties of Fe3C from First Principles[J]. Journal of Applied Physics, 2008, 103(4):2127. |
| [21] | ZHU Jiaqi, HE Xiaoqiao, YANG Dong, et al. A Peridynamic Model for Fracture Analysis of Polycrystalline bcc-Fe Associated with Molecular Dynamics Simulation[J]. Theoretical and Applied Fracture Mechanics, 2021, 114:102999. |
| [22] | SHIMOKAWA T, FUJII K, NIIYAMA T. Atomic Simulation Study of the Factors Affecting Nucleation in Deformation-induced Martensitic Transformation in Grains and at Grain Boundaries in Pure Iron[J]. Acta Materialia, 2024:265:119629. |
| [23] | WANG Huiling, WANG Feng, QIAN Dongsheng, et al. Investigation of Damage Mechanisms Related to Microstructural Features of Ferrite-cementite Steels via Experiments and Multiscale Simulations [J]. International Journal of Plasticity, 2023, 170:103745. |
| [1] | ZHENG Jiangfeng1, 2, 3, ZHANG Guoqing1, 2, 3, HAN Junhong1, 2, 3, LAI Zhihui1, 2, 3. Research on Mechanism of Nano-surface Generation in Diamond Cutting Single-crystal Nickels [J]. China Mechanical Engineering, 2025, 36(05): 963-973. |
| [2] | PAN Ling, LIN Guobin, HAN Yuqing, YU Hui. Molecular Dynamics Simulation for Effect of Nanoparticle Additives on Boundary Lubrication [J]. China Mechanical Engineering, 2023, 34(10): 1140-1156. |
| [3] | WANG Dexiang, ZHAO Qiliang, ZHANG Yu, GAO Teng, JIANG Jingliang, LIU Guoliang, LI Changhe, . Investigation on Tribological Mechanism of Ionic Liquid on Grinding Interfaces under MQL [J]. China Mechanical Engineering, 2022, 33(05): 560-568,606. |
| [4] | HAO Zhaopeng, HAN Xue, FAN Yihang. Study on Tool Interface Behavior of Silicon Carbide Toughened Alumina-based Ceramic Tools in Cutting Inconel718 Alloy#br# [J]. China Mechanical Engineering, 2021, 32(09): 1009-1016. |
| [5] | LI Qiang, GUO Chenguang, ZHAO Lijuan, LENG Yuefeng, YUE Haitao. Milling Force Modeling of DD5 Ni-based Single Crystal Superalloy with Crystallographic Anisotropic Characteristics [J]. China Mechanical Engineering, 2021, 32(06): 734-740. |
| [6] | LI Hong1;YUAN Junli1;LI Zhuoxin1;TILLMANN Wolfgang2;HU Anming1,3. Process of Molecular Dynamics Simulation of Nanojoining Processes [J]. China Mechanical Engineering, 2019, 30(04): 486-493. |
| [7] | Li Yong, Yang Xiaojing. Molecular Dynamics Simulation of Single Crystal Copper Material Surface Cutting Properties in Nano-scale [J]. China Mechanical Engineering, 2016, 27(06): 721-726. |
| [8] | Liu Min, Zhu Ming, Ma Qingxian, Ai Jing. Investigation of Rigid Particle Flow Method in Simulating Free Forging Processes [J]. China Mechanical Engineering, 2014, 25(19): 2674-2680. |
| [9] | Zhang Junjie, Yan Yongda, Sun Tao, Gao Qiang, Liang Yingchun, Dong Shen. Indirect Comparison between Molecular Dynamics Simulations and Experiments of Mechanical Nanomachining on Single Crystalline Copper [J]. China Mechanical Engineering, 2013, 24(24): 3289-3294. |
| [10] | Guo Xiaoguang;Zhang Liang;Jin Zhuji;Guo Dongming. Building Silicon Crystal Dislocation Models for Molecular Dynamics Simulation [J]. China Mechanical Engineering, 2013, 24(17): 2285-2289. |
| [11] | GUO Xiao-Guang, ZHANG Liang, JIN Zhu-Ji, GUO Dong-Meng. Molecular Dynamics Simulation in Vacancy Defect Monocrystal Silicon Nanometric Grinding [J]. China Mechanical Engineering, 2013, 24(10): 1284-1288,1295. |
| [12] | ZHANG Dun-Jie, SUN Chao, YAN Yong-Da, LIANG Ying-Chun, DONG Shen. Molecular Dynamics Modeling of Probe-based Nanoscratching on Crystalline Copper [J]. China Mechanical Engineering, 2012, 23(8): 967-971. |
| [13] | NA Jiang-Gong, LIU Geng, TONG Rui-Ting, LIU Lan. #br# Molecular Dynamics Simulation of Friction Behavior on Nanoscale Textured Surfaces [J]. China Mechanical Engineering, 2012, 23(19): 2378-2383. |
| [14] |
ZHANG Wei-Wen, GUO Gang, HUANG Yun, HUANG Zhi.
A Molecular Dynamics Study of Chip Formation on Nano-grinding Processes
[J]. China Mechanical Engineering, 2011, 22(2): 127-132.
|
| [15] |
DING Yong, KONG Shu-Qing, JIN Zhang-Jiao, ZHENG Rong-Ti.
Molecular Dynamic Simulation on Mechanism of Ultrasonic Wire Bonding in Electronic Package
[J]. China Mechanical Engineering, 2010, 21(20): 2496-2500.
|
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||