China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (10): 2171-2178.DOI: 10.3969/j.issn.1004-132X.2025.10.002
Tianqi WANG1, Jiang CHEN2, Hang XIANG2(
), Xiaofei SONG3
Received:2024-09-19
Online:2025-10-25
Published:2025-11-05
Contact:
Hang XIANG
通讯作者:
向航
作者简介:王天奇,男,1999年生,助理工程师。研究方向为微型燃机叶片气动优化基金资助:CLC Number:
Tianqi WANG, Jiang CHEN, Hang XIANG, Xiaofei SONG. Aerodynamic Optimization of Radial Turbines Based on Surrogate Model of Pre-screened Strategies and DFFD Parameterization[J]. China Mechanical Engineering, 2025, 36(10): 2171-2178.
王天奇, 陈江, 向航, 宋晓飞. 基于预筛选代理模型和直接操纵自由变形参数化的向心涡轮气动优化[J]. 中国机械工程, 2025, 36(10): 2171-2178.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.10.002
| 网格数目/104 | 流量/(kg·s-1) | 绝热效率 |
|---|---|---|
| 67 | 0.5027 | 0.8941 |
| 97 | 0.5055 | 0.9007 |
| 136 | 0.5054 | 0.9030 |
| 179 | 0.5054 | 0.9038 |
| 254 | 0.5054 | 0.9044 |
Tab.1 Grid independence verification
| 网格数目/104 | 流量/(kg·s-1) | 绝热效率 |
|---|---|---|
| 67 | 0.5027 | 0.8941 |
| 97 | 0.5055 | 0.9007 |
| 136 | 0.5054 | 0.9030 |
| 179 | 0.5054 | 0.9038 |
| 254 | 0.5054 | 0.9044 |
| 压比 | 绝热效率 | 流量 | |
|---|---|---|---|
| 原始几何 | 3.6140 | 90.30% | 0.5054 kg·s |
| 优化后几何 | 3.6088 | 91.80% | 0.5142 kg·s |
| 相对差值 | +1.66% | +1.7% |
Tab.2 Performance comparison at design point
| 压比 | 绝热效率 | 流量 | |
|---|---|---|---|
| 原始几何 | 3.6140 | 90.30% | 0.5054 kg·s |
| 优化后几何 | 3.6088 | 91.80% | 0.5142 kg·s |
| 相对差值 | +1.66% | +1.7% |
| [1] | WALSH P P, FLETCHER P. Gas Turbine Performance[M]. Malden, MA: Blackwell Science, 2004. |
| [2] | 陈明升,陈江,成金鑫,等.基于全叶片曲面参数化方法的涡轮气动优化[J].工程热物理学报,2023,44(3):641-653. |
| CHEN Mingsheng, CHEN Jiang, CHENG Jinxin, et al. Turbine Aerodvnamic Optimization Based on Total-blade Surface Parameterization Methoo[J]. Journal of Engineering Thermophysics, 2023, 44(3):641-653. | |
| [3] | LI Yan, XUE Songli, REN Xiaodong. Aerodynamic Optimization of a High-expansion Ratio Organic Radial-in-flow Turbine[J]. Journal of Mechanical Science and Technology,2016,30(12):5485-5490. |
| [4] | 杨伟平,欧阳玉清,房兴龙,等.基于iSIGHT的大膨胀比5.0级向心涡轮多目标优化与分析[J].推进技术,2022,43(9):79-89. |
| YANG Weiping, OUYANG Yuing, FANG Xinglong, et al. Multi-object Optimization and Analysis of 5.0 Expansion Ratio Radial Turbine Based on Isight[J]. Journal of Propulsion Technology, 2022, 43(9):79-89. | |
| [5] | LASSE M, ZUHEYR A, TOM V. Multidisciplinary Optimization of a Turbocharger Radial Turbine[J]. Journal of Turbomachinery, 2013,135(2):021022. |
| [6] | SONG P, SUN J, WANG K, et al. Development of an Optimization Design Method for Turbomachinery by Incorporating the Cooperative Coevolution Genetic Algorithm and Adaptive Approximate Model[C]∥Turbo Expo:Power for Land, Sea, and Air. Vancouver, British Columbia, Canada, 2011, 54679:1139-1153. |
| [7] | SEDERBERG T W, PARRY S R. Free-form Deformation of Solid Geometric Models[J]. ACM SIGGRAPH Computer Graphics, 1986, 20:151-160. |
| [8] | COQUILLART S. Extended Free-form Deformation:a Sculpturing Tool for 3D Geometric Modeling[J]. Proceedings of the 17th Annual Conference on Computer Graphics and Interactive Techniques, 1990, 20(4):187-196. |
| [9] | PREM K, ANGELO M, MAGNENAT T N, et al. Simulation of Facial Muscle Actions Based on Rational Free Form Deformations[J]. Computer Graphics Forum, 1992, 11(3):59-69. |
| [10] | LAMOUSIN H J, WAGGENSPACK W N. NURBS-based Free-form Deformations[J]. Computer Graphics&Applications IEEE, 1994, 14(6):59-65. |
| [11] | XIANG H, CHEN J. Aerothermodynamics Optimal Design of a Multistage Axial Compressor in a Gas Turbine Using Directly Manipulated Free-form Deformation[J]. Case Studies in Thermal Engineering, 2021, 26:101142. |
| [12] | 郭艺璇, 陈江, 刘熠, 等. 数据驱动的两级轴流涡轮多自由度气动优化设计[J].推进技术, 2024, 45(6):100-109. |
| GUO Yixuan, CHEN Jiang, LIU Yi, et al. Aerodvnamic Optimization Desian with Multiple Dearees of Freedom for a Two-stace Axial Turbine Based on Cata-driven[J]. Journal of Propulsion Technology, 2024, 45(6):100-109. | |
| [13] | LIU Y, CHEN J, CHENG J, et al. Aerodynamic Optimization of Transonic Rotor Using Radial Basis Function Based Deformation and Data-driven Differential Evolution Optimizer[J]. Aerospace, 2022, 9(9):508. |
| [14] | HU H, YU J, SONG Y, et al. The Application of Support Vector Regression and Mesh Deformation Technique in the Optimization of Transonic Compressor Design[J]. Aerospace Science and Technology, 2021, 112:106589 |
| [15] | 向航. 高负荷压气机气动设计与多型面整体优化探究[D]. 北京:北京航空航天大学, 2021. |
| XIANG Hang. Exploring Aerodynamic Design and Multi-surface Overall Optimization of Highly Loaded Compressor[D]. Beijing:Beihang University, 2021. | |
| [16] | 池元成, 方杰, 饶大林, 等. 自适应中心变异差分进化算法及其在涡轮叶型优化设计中的应用[J]. 航空动力学报, 2010, 25(8):1849-1854. |
| CHI Yuancheng, FANG Jie, RAO Dalin, et al. Self-adaptive Center-mutation Differential Evolution and Its Application to Shape Optimization Design of a Turbine Blade[J]. Journal of Aerospace Power, 2010, 25(8):1849-1854. | |
| [17] | KRIGE D G. A Statistical Approach to Some Basic Mine Valuation Problems on the Witwatersrand[J]. Journal of the Southern African Institute of Mining and Metallurgy, 1951, 52(6):119-139. |
| [18] | MATHERON G. Principles of Geostatistics[J]. Economic Geology, 1963, 58(8):1246-1266. |
| [19] | BUHMANN M D. Radial Basis Fimctions[J]. Acta numerica, 2000, 9:1-38 |
| [20] | 刘熠. 轴流压气机人工智能气动设计优化探索[D]. 北京:北京航空航天大学, 2023. |
| LIU Yi. Exploring Artificial Intelligence Assisted Aerodynamic Design and Optimization of Axial Compressor[D]. Beijing:Beihang University, 2023. | |
| [21] | CHENG J, YANG C, ZHAO S. A Phased Aerodynamic Optimization Method for Compressors Based on Multi-degrees-of-freedom Surface Parameterization[J]. Journal of Thermal Science, 2021, 30(6):2071-2086. |
| [1] | TUO Yang, ZHANG Zeqiang, XIE Xinlan, SONG Haoxuan. Modeling and Optimization of Multimanned Two-sided Disassembly Line Balancing Problems for Walking Workers [J]. China Mechanical Engineering, 2025, 36(01): 113-122,132. |
| [2] | MA Chao1, 2, ZHANG Jianjian2, 3, WANG Ningning2, 3, GUO Shanshan1, 2. Flow Channel Wall Erosion Characteristics and Impacts on Performance in Radial Turbines [J]. China Mechanical Engineering, 2024, 35(07): 1232-1240. |
| [3] | WEI Shupeng, TANG Hongtao, LI Xixing, YANG Guanyu, ZHANG Jian. Dual-resource Constrained Flexible Machining Workshop Inverse Scheduling Problem [J]. China Mechanical Engineering, 2024, 35(03): 457-471. |
| [4] | LIU Yuanming, WANG Zhenhua, WANG Tao, LIU Wenli, XIONG Xiaoyan. Data-driven Modeling and Intelligent Prediction Analysis for Hot Strip Outlet Crowns [J]. China Mechanical Engineering, 2020, 31(22): 2728-2733. |
| [5] | ZHU Chuanjun, QIU Wen, ZHANG Chaoyong, JIN Liangliang. Multi-objective Flexible Job Shop Dynamic Scheduling Strategy Aiming at Scheduling Stability and Robustness [J]. China Mechanical Engineering, 2017, 28(02): 173-182. |
| [6] | SUN Hao, XIAO Hong, HU Qingjun. Analysis for Load Distribution of Tandem Cold Rolling Based on Constrained Multiobjective Evolutionary Algorithm [J]. China Mechanical Engineering, 2017, 28(01): 93-100. |
| [7] | He Gaiyun, Liu Xin, Liu Peipei, Guo Longzhen. Evaluation of Complex Surface Profile Errors Based on Subdivision and Sphere Approximation Method and Differential Evolution Algorithm [J]. China Mechanical Engineering, 2014, 25(2): 152-156. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||