China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (12): 2820-2828.DOI: 10.3969/j.issn.1004-132X.2025.12.002

Previous Articles    

Design of Continuum Robots and Compensation Strategies for Losses of Guide Paths

Mingxing YANG1,3(), Jiale SHEN1,3, Peng GAO2,3(), Xing ZHANG1,3, Junxiang WANG2   

  1. 1.School of Mechanical Engineering,Anhui University of Technology,Ma'anshan,Anhui,243032
    2.School of Mechanical and Energy Engineering,Beijing University of Technology,Beijing,100124
    3.Anhui Engineering Research Center on Information Fusion and Control of Intelligent Robot,Wuhu,Anhui,241002
  • Received:2024-11-17 Online:2025-12-25 Published:2025-12-31
  • Contact: Peng GAO

连续体机器人设计与导向路径损失补偿策略

杨明星1,3(), 沈佳乐1,3, 高鹏2,3(), 张兴1,3, 王俊翔2   

  1. 1.安徽工业大学机械工程学院, 马鞍山, 243032
    2.北京工业大学机械与能源工程学院, 北京, 100124
    3.安徽省智能机器人信息融合与控制工程研究中心, 芜湖, 241002
  • 通讯作者: 高鹏
  • 作者简介:杨明星,男,1986年生,副教授。研究方向为机器人动力学、连续体机器人。E-mail: mingxingyangvip@163.com
    高鹏*(通信作者),男,1987年生,博士、讲师。研究方向为医疗机器人设计、骨科刀具设计与制造。E-mail: gaoqindao@126.com
  • 基金资助:
    国家自然科学基金(52005006);国家自然科学基金(52105424);北京市自然科学基金(7232331);北京市教育委员会科技计划(KM202210005033);安徽省智能机器人信息融合与控制工程研究中心资助项目(IFCIR2024012)

Abstract:

A novel cable-driven continuum robot and the driving error compensation strategy for guiding paths were proposed to address the problems of low kinematics modeling accuracy and insufficient axial stiffness in current continuum robots. A flexible continuous cutting body with flexible support and a flexible arm structure with enhanced axial stiffness were designed. Subsequently, a kinematics model of the robots was established and the workspace at the end of the flexible arm was obtained. The accuracy of the kinematics modeling was confirmed through bending simulation. Analyzing the causes of bending errors, deriving the transmission losses of the casing and the tension transmission model before and after the rope passes through the disc hole, and then a compensation strategy was proposed for driving loss compensation and kinematics model parameter correction. The bending experiments of continuum robots at different angles show that the maximum bending angle error after compensation is as 4.11°, the maximum position error is as 6.11 mm, and the maximum error reduces 48.0%. The experiments verify the effectiveness of the proposed robots and drive error compensation control strategy.

Key words: continuum robot, cable-driven, kinematics modeling, error compensation control

摘要:

针对目前连续体机器人运动学建模精度低和轴向刚度不足的问题,提出了一种新型绳驱连续体机器人及其导向路径的驱动误差补偿策略。设计了一种具有灵活柔性支撑的切口柔性连续体和提高轴向刚度的柔性臂结构,随后建立了机器人的运动学模型并获得了柔性臂末端的工作空间,通过弯曲仿真证实了运动学模型的准确性。分析弯曲误差产生的原因,推导出套管传递损失和绳索穿过圆盘孔前后张力传递模型,提出了一种对驱动损失补偿及运动学模型参数修正的补偿策略。连续体机器人不同角度的弯曲实验表明:补偿后最大弯曲角度误差为4.11°,最大位置误差为6.11 mm,最大误差减小了48.0%。实验验证了所提出的机器人及驱动误差补偿控制策略的有效性。

关键词: 连续体机器人, 绳驱动, 运动学建模, 误差补偿控制

CLC Number: