China Mechanical Engineering ›› 2025, Vol. 36 ›› Issue (8): 1883-1892.DOI: 10.3969/j.issn.1004-132X.2025.08.023
Jiyuan HAN1, Jiahao ZHANG2, Yong ZHAN3, Hongyi ZHANG3, Dongyue QU3()
Received:
2024-06-11
Online:
2025-08-25
Published:
2025-09-18
Contact:
Dongyue QU
通讯作者:
曲东越
作者简介:
韩济远,男,1998年生,硕士。研究方向为机械制造工艺。
基金资助:
CLC Number:
Jiyuan HAN, Jiahao ZHANG, Yong ZHAN, Hongyi ZHANG, Dongyue QU. Prediction of Residual Stress in Boring Main Bearing Holes of Marine Diesel Engine Bodies[J]. China Mechanical Engineering, 2025, 36(8): 1883-1892.
韩济远, 张嘉豪, 展勇, 张鸿羿, 曲东越. 船用柴油机机体主轴承孔镗削加工残余应力预测[J]. 中国机械工程, 2025, 36(8): 1883-1892.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2025.08.023
A/MPa | B/MPa | n | C | m | Tm/℃ | Tr/℃ | |
---|---|---|---|---|---|---|---|
293.8 | 230.2 | 0.578 | 0.0652 | 0.706 | 1522 | 20 | 0.0021 |
Tab.1 Parameters of J-C constitutive model for Q235
A/MPa | B/MPa | n | C | m | Tm/℃ | Tr/℃ | |
---|---|---|---|---|---|---|---|
293.8 | 230.2 | 0.578 | 0.0652 | 0.706 | 1522 | 20 | 0.0021 |
实验 编号 | 切削速度/ (m·min-1) | 切削深度/ mm | 进给量/ (mm·r-1) | 仿真表面残余 应力/MPa |
---|---|---|---|---|
1 | 75.398 | 0.1 | 0.05 | 191.640 |
2 | 94.248 | 0.2 | 0.05 | 238.855 |
3 | 117.809 | 0.3 | 0.05 | 306.562 |
4 | 94.248 | 0.1 | 0.10 | 256.518 |
5 | 117.809 | 0.2 | 0.10 | 310.733 |
6 | 75.398 | 0.3 | 0.10 | 202.779 |
7 | 117.809 | 0.1 | 0.15 | 330.839 |
8 | 75.398 | 0.2 | 0.15 | 207.642 |
9 | 94.248 | 0.3 | 0.15 | 326.356 |
Tab.2 Simulated values of residual stress in orthogonal experimental groups
实验 编号 | 切削速度/ (m·min-1) | 切削深度/ mm | 进给量/ (mm·r-1) | 仿真表面残余 应力/MPa |
---|---|---|---|---|
1 | 75.398 | 0.1 | 0.05 | 191.640 |
2 | 94.248 | 0.2 | 0.05 | 238.855 |
3 | 117.809 | 0.3 | 0.05 | 306.562 |
4 | 94.248 | 0.1 | 0.10 | 256.518 |
5 | 117.809 | 0.2 | 0.10 | 310.733 |
6 | 75.398 | 0.3 | 0.10 | 202.779 |
7 | 117.809 | 0.1 | 0.15 | 330.839 |
8 | 75.398 | 0.2 | 0.15 | 207.642 |
9 | 94.248 | 0.3 | 0.15 | 326.356 |
w(C) | w(Si) | w(Mn) | w(P) | w(S) |
---|---|---|---|---|
0.13 | 0.32 | 1.43 | 0.028 | 0.022 |
w(Fe) | w(Nb) | w(Alt) | w(V) | w(Cev) |
97.687 | 0.003 | 0.004 | 0.006 | 0.37 |
Tab.3 The chemical composition of Q235 steel (mass fraction)
w(C) | w(Si) | w(Mn) | w(P) | w(S) |
---|---|---|---|---|
0.13 | 0.32 | 1.43 | 0.028 | 0.022 |
w(Fe) | w(Nb) | w(Alt) | w(V) | w(Cev) |
97.687 | 0.003 | 0.004 | 0.006 | 0.37 |
密度/ (g·cm-3) | 硬度HRC/MPa | 屈服极限/MPa | 弹性模量/GPa |
---|---|---|---|
7.85 | 17 | 295 | 198.7 |
泊松比 | 热膨胀系数/K-1 | 热导率/(W·(m·K)-1) | |
0.25 | 10.6×10-6 | 49 |
Tab.4 The physical properties of Q235 steel
密度/ (g·cm-3) | 硬度HRC/MPa | 屈服极限/MPa | 弹性模量/GPa |
---|---|---|---|
7.85 | 17 | 295 | 198.7 |
泊松比 | 热膨胀系数/K-1 | 热导率/(W·(m·K)-1) | |
0.25 | 10.6×10-6 | 49 |
前角γ0/(°) | 后角α0/ (°) | 主偏角κr/(°) | 刀尖圆弧 半径rε /mm | 切削刃钝圆 半径re /μm |
---|---|---|---|---|
15 | 11 | 95 | 0.4 | 20 |
Tab.5 The geometric parameters of the cutting tool
前角γ0/(°) | 后角α0/ (°) | 主偏角κr/(°) | 刀尖圆弧 半径rε /mm | 切削刃钝圆 半径re /μm |
---|---|---|---|---|
15 | 11 | 95 | 0.4 | 20 |
切削参数 | 试验水平 | ||
---|---|---|---|
1 | 2 | 3 | |
切削速度v/(m·min-1) | 75.398 | 94.248 | 117.809 |
切削深度ap/mm | 0.1 | 0.2 | 0.3 |
切削进给量f/(mm·r-1) | 0.05 | 0.10 | 0.15 |
Tab.6 Cutting parameters at specific levels and values
切削参数 | 试验水平 | ||
---|---|---|---|
1 | 2 | 3 | |
切削速度v/(m·min-1) | 75.398 | 94.248 | 117.809 |
切削深度ap/mm | 0.1 | 0.2 | 0.3 |
切削进给量f/(mm·r-1) | 0.05 | 0.10 | 0.15 |
编号 | 切削速度v/ (m·min-1) | 切削深度ap/ mm | 进给量f/ (mm·r-1) | X向残余应力/ MPa | Y向残余应力/ MPa | 表层残余应力/ MPa |
---|---|---|---|---|---|---|
1 | 75.398 | 0.3 | 0.05 | 171.114 | 99.8287 | 198.106 |
2 | 94.248 | 0.2 | 0.05 | 160.871 | 124.017 | 203.125 |
3 | 117.809 | 0.3 | 0.05 | 221.097 | 122.587 | 267.881 |
4 | 94.248 | 0.2 | 0.15 | 238.106 | 143.869 | 263.785 |
5 | 75.398 | 0.1 | 0.15 | 177.757 | 122.787 | 216.042 |
6 | 117.809 | 0.3 | 0.15 | 270.404 | 204.146 | 338.813 |
7 | 75.398 | 0.2 | 0.10 | 168.366 | 130.232 | 212.855 |
… | … | … | … | … | … | … |
… | … | … | … | … | … | … |
20 | 94.248 | 0.1 | 0.10 | 195.016 | 101.220 | 219.719 |
21 | 94.248 | 0.3 | 0.05 | 204.505 | 94.688 | 225.362 |
22 | 94.248 | 0.1 | 0.15 | 229.226 | 104.637 | 251.979 |
23 | 94.248 | 0.3 | 0.15 | 206.740 | 191.327 | 281.687 |
Tab.7 Measurement results of the response surface experiment for surface residual stress
编号 | 切削速度v/ (m·min-1) | 切削深度ap/ mm | 进给量f/ (mm·r-1) | X向残余应力/ MPa | Y向残余应力/ MPa | 表层残余应力/ MPa |
---|---|---|---|---|---|---|
1 | 75.398 | 0.3 | 0.05 | 171.114 | 99.8287 | 198.106 |
2 | 94.248 | 0.2 | 0.05 | 160.871 | 124.017 | 203.125 |
3 | 117.809 | 0.3 | 0.05 | 221.097 | 122.587 | 267.881 |
4 | 94.248 | 0.2 | 0.15 | 238.106 | 143.869 | 263.785 |
5 | 75.398 | 0.1 | 0.15 | 177.757 | 122.787 | 216.042 |
6 | 117.809 | 0.3 | 0.15 | 270.404 | 204.146 | 338.813 |
7 | 75.398 | 0.2 | 0.10 | 168.366 | 130.232 | 212.855 |
… | … | … | … | … | … | … |
… | … | … | … | … | … | … |
20 | 94.248 | 0.1 | 0.10 | 195.016 | 101.220 | 219.719 |
21 | 94.248 | 0.3 | 0.05 | 204.505 | 94.688 | 225.362 |
22 | 94.248 | 0.1 | 0.15 | 229.226 | 104.637 | 251.979 |
23 | 94.248 | 0.3 | 0.15 | 206.740 | 191.327 | 281.687 |
切削参数 | 切削速度v/ (m·min-1) | 切削深度 ap/mm | 进给量f/ (mm·r-1) | |
---|---|---|---|---|
Kavg1 | 167.458 | 178.781 | 169.151 | |
Kavg2 | 187.542 | 200.046 | 204.363 | |
Kavg3 | 225.721 | 201.895 | 207.207 | |
R1 | 58.263 | 23.114 | 38.056 | |
Kavg4 | 137.822 | 130.628 | 118.797 | |
Kavg5 | 138.855 | 133.291 | 131.900 | |
Kavg6 | 145.598 | 158.355 | 171.577 | |
R2 | 7.776 | 27.727 | 52.779 | |
Kavg7 | 217.431 | 222.938 | 212.831 | |
Kavg8 | 234.844 | 240.893 | 244.821 | |
Kavg9 | 274.745 | 263.189 | 269.368 | |
R3 | 57.314 | 40.251 | 56.537 |
Tab.8 Range analysis of residual stress in machining
切削参数 | 切削速度v/ (m·min-1) | 切削深度 ap/mm | 进给量f/ (mm·r-1) | |
---|---|---|---|---|
Kavg1 | 167.458 | 178.781 | 169.151 | |
Kavg2 | 187.542 | 200.046 | 204.363 | |
Kavg3 | 225.721 | 201.895 | 207.207 | |
R1 | 58.263 | 23.114 | 38.056 | |
Kavg4 | 137.822 | 130.628 | 118.797 | |
Kavg5 | 138.855 | 133.291 | 131.900 | |
Kavg6 | 145.598 | 158.355 | 171.577 | |
R2 | 7.776 | 27.727 | 52.779 | |
Kavg7 | 217.431 | 222.938 | 212.831 | |
Kavg8 | 234.844 | 240.893 | 244.821 | |
Kavg9 | 274.745 | 263.189 | 269.368 | |
R3 | 57.314 | 40.251 | 56.537 |
平方和 | 均方差 | F值 | P值 | 显著性 | |
---|---|---|---|---|---|
模型 | 25 409.55 | 2823.28 | 692.59 | <0.0001 | 显著 |
A | 11 022.27 | 11 022.27 | 2703.90 | <0.0001 | 显著 |
B | 4567.87 | 4567.87 | 1120.56 | <0.0001 | 显著 |
C | 9013.77 | 9013.77 | 2211.19 | <0.0001 | 显著 |
AB | 21.72 | 21.72 | 5.33 | 0.0436 | 显著 |
AC | 2.10 | 2.10 | 0.5155 | 0.4892 | — |
BC | 205.82 | 205.82 | 50.49 | <0.0001 | 显著 |
A² | 80.28 | 80.28 | 19.69 | 0.0013 | 显著 |
B² | 36.07 | 36.07 | 8.85 | 0.0139 | 显著 |
C² | 4.26 | 4.26 | 1.05 | 0.3306 | — |
残差 | 40.76 | 4.08 | — | — | — |
失拟项 | 30.15 | 6.03 | 2.84 | 0.1384 | 不显著 |
纯误差 | 10.62 | 2.12 | — | — | — |
总离差 | 25450.31 | — | — | — | — |
Tab.9 Significance test of response surface model
平方和 | 均方差 | F值 | P值 | 显著性 | |
---|---|---|---|---|---|
模型 | 25 409.55 | 2823.28 | 692.59 | <0.0001 | 显著 |
A | 11 022.27 | 11 022.27 | 2703.90 | <0.0001 | 显著 |
B | 4567.87 | 4567.87 | 1120.56 | <0.0001 | 显著 |
C | 9013.77 | 9013.77 | 2211.19 | <0.0001 | 显著 |
AB | 21.72 | 21.72 | 5.33 | 0.0436 | 显著 |
AC | 2.10 | 2.10 | 0.5155 | 0.4892 | — |
BC | 205.82 | 205.82 | 50.49 | <0.0001 | 显著 |
A² | 80.28 | 80.28 | 19.69 | 0.0013 | 显著 |
B² | 36.07 | 36.07 | 8.85 | 0.0139 | 显著 |
C² | 4.26 | 4.26 | 1.05 | 0.3306 | — |
残差 | 40.76 | 4.08 | — | — | — |
失拟项 | 30.15 | 6.03 | 2.84 | 0.1384 | 不显著 |
纯误差 | 10.62 | 2.12 | — | — | — |
总离差 | 25450.31 | — | — | — | — |
实验 编号 | 切削速度v/(m·min-1) | 切削深度ap/mm | 进给量f/(mm·r-1) | 实验表面残余应力/MPa | 预测表面残余应力/MPa |
---|---|---|---|---|---|
1 | 94.248 | 0.3 | 0.05 | 225.362 | 223.071 |
2 | 94.248 | 0.1 | 0.15 | 251.979 | 240.628 |
3 | 94.248 | 0.3 | 0.15 | 281.687 | 293.166 |
4 | 75.398 | 0.1 | 0.05 | 167.487 | 168.640 |
5 | 75.398 | 0.2 | 0.15 | 244.808 | 238.719 |
Tab.10 Experimental and predicted values of the surface residual stress prediction model
实验 编号 | 切削速度v/(m·min-1) | 切削深度ap/mm | 进给量f/(mm·r-1) | 实验表面残余应力/MPa | 预测表面残余应力/MPa |
---|---|---|---|---|---|
1 | 94.248 | 0.3 | 0.05 | 225.362 | 223.071 |
2 | 94.248 | 0.1 | 0.15 | 251.979 | 240.628 |
3 | 94.248 | 0.3 | 0.15 | 281.687 | 293.166 |
4 | 75.398 | 0.1 | 0.05 | 167.487 | 168.640 |
5 | 75.398 | 0.2 | 0.15 | 244.808 | 238.719 |
粗糙度 Ra/mm | 表面残余 应力σs/MPa | 切削残余 应力σx /MPa | 进给残余 应力σy /MPa | |
---|---|---|---|---|
第1组 | 1.823 | 338.813 | 270.404 | 204.146 |
第2组 | 0.201 | 167.487 | 125.485 | 109.788 |
变化量 | -1.622 | -171.326 | -144.919 | -94.358 |
降幅/% | 88.9 | 50.6 | 53.6 | 46.2 |
Tab.11 Processing surface quality under different cutting parameters
粗糙度 Ra/mm | 表面残余 应力σs/MPa | 切削残余 应力σx /MPa | 进给残余 应力σy /MPa | |
---|---|---|---|---|
第1组 | 1.823 | 338.813 | 270.404 | 204.146 |
第2组 | 0.201 | 167.487 | 125.485 | 109.788 |
变化量 | -1.622 | -171.326 | -144.919 | -94.358 |
降幅/% | 88.9 | 50.6 | 53.6 | 46.2 |
[1] | WITHERS P J. Residual Stress and Its Role in Failure[J]. Reports on Progress in Physics, 2007, 70(12): 2211. |
[2] | AKHTAR W, LAZOGLU I, LIANG S Y. Prediction and Control of Residual Stress-based Distortions in the Machining of Aerospace Parts: a Review[J]. Journal of Manufacturing Processes, 2022, 76: 106-122. |
[3] | GRISSA R, ZEMZEMI F, FATHALLAH R. Three Approaches for Modeling Residual Stresses Induced by Orthogonal Cutting of AISI316L[J]. International Journal of Mechanical Sciences, 2018, 135: 253-260. |
[4] | NASR M N A, NG E G, ELBESTAWI M A. A Modified Time-efficient FE Approach for Predicting Machining-induced Residual Stresses[J]. Finite Elements in Analysis and Design, 2008, 44(4): 149-161. |
[5] | VALIORGUE F, RECH J, HAMDI H, et al. 3D Modeling of Residual Stresses Induced in Finish Turning of an AISI304L Stainless Steel[J]. International Journal of Machine Tools and Manufacture, 2012, 53(1): 77-90. |
[6] | ÖZEL T, ZEREN E. Finite Element Modeling of Stresses Induced by High Speed Machining with Round Edge Cutting Tools[C]∥Manufacturing Engineering and Materials Handling, Parts A and B. ASMEDC, 2005: 1279-1287. |
[7] | AKRAM S, JAFFERY S H I, KHAN M, et al. A Numerical Investigation of Effects of Cutting Velocity and Feed Rate on Residual Stresses in Aluminum Alloy Al-6061[J]. International Journal of Materials, Mechanics and Manufacturing, 2015, 3(1): 26-30. |
[8] | LUO Jiaxiang, SUN Yuwen. Optimization of Process Parameters for the Minimization of Surface Residual Stress in Turning Pure Iron Material Using Central Composite Design[J]. Measurement, 2020, 163: 108001. |
[9] | 韩蕾, 史振宇, 袭建人, 等. 陶瓷基复合材料超声振动辅助加工技术研究现状[J]. 工具技术, 2024, 58(3): 3-20. |
HAN Lei, SHI Zhenyu, XI Jianren, et al. Research Status of Ultrasonic Vibration Assisted Machining Technology for Ceramic Matrix Composites[J]. Tool Engineering, 2024, 58(3): 3-20. | |
[10] | YIN Yueming, YANG Zhen, HU Haifeng, et al. Metric-learning-assisted Domain Adaptation[J]. Neurocomputing, 2021, 454: 268-279. |
[11] | 李莉, 张赛, 何强, 等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索, 2015, 34(8): 41-45. |
LI Li, ZHANG Sai, HE Qiang, et al. Application of Response Surface Methodology in Experiment Design and Optimization[J]. Research and Exploration in Laboratory, 2015, 34(8): 41-45. | |
[12] | EBRAHIMZADEH P, MARTÍNEZ L B P, PARIENTE I F, et al. Optimization of Shot-peening Parameters for Steel AISI 316L via Response Surface Methodology (RSM): Introducing Two Novel Mechanical Aspects[J]. The International Journal of Advanced Manufacturing Technology, 2024, 132(1): 647-667. |
[13] | MEHDI H, MISHRA R S. An Experimental Analysis and Optimization of Process Parameters of AA6061 and AA7075 Welded Joint by TIG+FSP Welding Using RSM[J]. Advances in Materials and Processing Technologies, 2022, 8(1): 598-620. |
[14] | XU Fuyang, SUN Yuwen. A Circumscribed Corner Rounding Method Based on Double Cubic B-splines for a Five-axis Linear Tool Path[J]. The International Journal of Advanced Manufacturing Technology, 2018, 94(1): 451-462. |
[15] | ARRAZOLA P J, KORTABARRIA A, MADARIAGA A, et al. On the Machining Induced Residual Stresses in IN718 Nickel-based Alloy: Experiments and Predictions with Finite Element Simulation[J]. Simulation Modelling Practice and Theory, 2014, 41: 87-103. |
[16] | 左善超, 王德成, 杜兵, 等. 塑性效应对盲孔法测量焊接残余应力影响的研究[J]. 机械工程学报, 2022, 58(16): 206-214. |
ZUO Shanchao, WANG Decheng, DU Bing, et al. Plasticity Effects in the Hole-drilling Residual Stress Measurements in Welded Structure[J]. Journal of Mechanical Engineering, 2022, 58(16): 206-214. | |
[17] | 李昊, 李华. 盲孔法测量非均匀残余应力时的释放系数[J]. 焊接学报, 2013, 34(6): 85-88. |
LI Hao, LI Hua. Release Coefficients during Measuring Non-uniform Residual Stress with Blind-hole Method[J]. Transactions of the China Welding Institution, 2013, 34(6): 85-88. | |
[18] | 马小明, 欧清扬. 盲孔法测曲面残余应力时释放系数的数值模拟[J]. 华南理工大学学报(自然科学版), 2019, 47(12): 25-31. |
MA Xiaoming, Qingyang OU. Numerical Simulation for Hole-drilling Strain Gage Method Applied on Curved Surface[J]. Journal of South China University of Technology (Natural Science Edition), 2019, 47(12): 25-31. | |
[19] | FAN Zhiqiang, CAO Lixin, LIU Feng. FEM Analysis of the Distortion of Thin-walled Sealing Part Affected by the Machining-induced Residual Stress[J]. IOP Conference Series: Materials Science and Engineering, 2020, 768(4): 042028. |
[20] | DING Hongtao, SHIN Y C. Multi-physics Modeling and Simulations of Surface Microstructure Alteration in Hard Turning[J]. Journal of Materials Processing Technology, 2013, 213(6): 877-886. |
[1] |
DONG Guo-Jiang, DIAO Chang-Cai, CAO Miao-Yan, HAO Hai-Bin, YANG Dong-Feng.
Study on Wall-thickness and Deformation Regularity of Cylinder Part Based on Solid Granules Medium Forming
[J]. J4, 201016, 21(16): 1992-1998.
|
[2] | NIU Yanzhao1, LIU Hongwei1, SONG Yali2, ZHU Xianglong1, HUANG Jiamei2, KANG Renke1. Optimization and Experimental Study of Bolt Retreat Groove Rolling Wheels Based on Finite Element Simulation [J]. China Mechanical Engineering, 2025, 36(06): 1214-1221. |
[3] | ZHANG Dengyong, LI Congbo, WU Shaoqing, ZHANG You, LI Chengyuan. Processing Parameter Energy-saving Optimization for Boring Automobile Engine Crankshaft Holes Considering Coaxiality [J]. China Mechanical Engineering, 2025, 36(06): 1280-1289. |
[4] | ZHOU Jinhua1, 2, QI Qi1, 2, REN Junxue1, 2, ZHAN Mei1, 2. Inverse Solution for TC4 Residual Stress Gradient Distribution in Four-axis Milling with Tapered Ball-end Cutters [J]. China Mechanical Engineering, 2025, 36(04): 770-779. |
[5] | HUI Shengmeng1, MAO Xiaobo4, ZHAN Lihua1, 2, 3. Machine Learning and Finite Element Simulation and Experimentation for Springback Prediction of Al-Li Alloys [J]. China Mechanical Engineering, 2024, 35(12): 2114-2121. |
[6] | FU Junjian1, 2, 4, MENG Yonggen1, WU Haihua1, HU Huan3, LI Xiang1, 2, ZHOU Xiangman1. Design and Performance Regulation of Discretely Assembled Octahedral Metamaterials [J]. China Mechanical Engineering, 2024, 35(12): 2268-2279. |
[7] | TIAN Tao1, 3, LI Wenhui2, 3, 4, WEN Xuejie1, 3, LI Xiuhong1, 3, YANG Shengqiang1, 3. DEM-FEM Coupled Simulation and Experimental Study of Residual Stresses in Horizontal Vibratory Finishing Processes [J]. China Mechanical Engineering, 2024, 35(09): 1667-1676. |
[8] | DONG Zhibo1, LI Chengkun1, WANG Chengcheng1, HAN Fang1, ZHANG Zhihang1, TENG Junfei2, LYU Yanlong2. Study on Influence Rules of Residual Stress on Thermal Fatigue Life of GH3230 Laminate Welds [J]. China Mechanical Engineering, 2024, 35(06): 1097-1102. |
[9] | WU Hui, LI Xiaogao, SHEN Guolang, WANG Xinguo, MA Chenwen. Interface Quality Detection of Double-layer Bonding Structures Based on Ultrasonic Guided Wave Technology [J]. China Mechanical Engineering, 2024, 35(05): 916-927. |
[10] | ZHANG Jinyang, XU Weichun, WANG Xiaohan, JIANG Xiaohui, GAO Shan. Study on Influences of Milling Process Optimization on Residual Stress Distribution for Machining Nickel-based Superalloys [J]. China Mechanical Engineering, 2024, 35(04): 624-635. |
[11] | LI Yanle, PAN Zhongtao, QI Xiaoxia, CUI Weiqiang, CHEN Jian, LI Fangyi. Effect of Heat Treatment on Temperature and Stress Distribution during Laser Cladding of 316L Steels [J]. China Mechanical Engineering, 2024, 35(04): 666-677. |
[12] | HAN Rui, LI Xiuhong, WANG Jiaming, LI Wenhui, CHENG Siyuan, YANG Shengqiang, . Influences of Horizontal Forced Vibration Finishing on Surface Integrity Parameters of TC4 Titanium Alloys [J]. China Mechanical Engineering, 2023, 34(17): 2037-2047. |
[13] | LUO Wenze, CHENG Huimei, LIU Hongyan, WANG Yifeng, YE Yanhong, DENG Dean. Numerical Simulation of Residual Stress and Welding Deformation for High Strength Steel Q960E Butt-welded Joints [J]. China Mechanical Engineering, 2023, 34(17): 2095-2105,2141. |
[14] | WANG Dong, LIN Hongxu, ZHAO Jingwen, QIAO Ruiyong, ZHANG Junyu, ZHAO Rui. Effects of High Speed Tangential Turn-milling on Surface Integrity of 18CrNiMo7-6 Steels [J]. China Mechanical Engineering, 2023, 34(07): 812-820. |
[15] | ZHANG Ke, WANG Xiaokai, HUA Lin, HAN Xinghui, NING Xiangjin, . Study on Offset Mechanism and Adaptive Fuzzy Control Method for Radial-axial Ring Rolling Processes of Super Large Rings [J]. China Mechanical Engineering, 2023, 34(01): 109-117. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||