[1]BARROIS W. Repeated Plastic Deformation as a Cause of Mechanical Surface Damage in Fatigue, Wear, Fretting-fatigue, and Rolling Fatigue[J]. International Journal of Fatigue, 1979, 1(4):167-189.
[2]EL LAITHY M, WANG Ling, HARVEY T J, et al. Further Understanding of Rolling Contact Fatigue in Rolling Element Bearings—a Review[J]. Tribology International, 2019, 140:105849.
[3]SADEGHI F, JALALAHMADI B, SLACK T S, et al. A Review of Rolling Contact Fatigue[J]. Journal of Tribology, 2009, 131(4):041403.
[4]DEOLALIKAR N, SADEGHI F. Fatigue Life Reduction in Mixed Lubricated Elliptical Contacts[J]. Tribology Letters, 2007, 27(2):197-209.
[5]AKAMATSU Y, TSUSHIMA N, GOTO T, et al. Influence of Surface Roughness Skewness on Rolling Contact Fatigue Life[J]. Tribology Transactions, 1992, 35(4):745-750.
[6]CUI Li, SU Yin. Contact Fatigue Life Prediction of Rolling Bearing Considering Machined Surface Integrity[J]. Industrial Lubrication and Tribology, 2022, 74(1):73-80.
[7]LORENZ S J, SADEGHI F, TRIVEDI H K, et al. A Continuum Damage Mechanics Finite Element Model for Investigating Effects of Surface Roughness on Rolling Contact Fatigue[J]. International Journal of Fatigue, 2021, 143:105986.
[8]CHEN Hongyu, WANG Lin, PENG Feng, et al. Hydrogen Retention and Affecting Factors in Rolled Tungsten:Thermal Desorption Spectra and Molecular Dynamics Simulations[J]. International Journal of Hydrogen Energy, 2023, 48(78):30522-30531.
[9]WANG Jiahuan, ZHOU Yu, QIAO Zhen, et al. Surface Polishing and Modification of Ti-6Al-4V Alloy by Shear Thickening Polishing[J]. Surface and Coatings Technology, 2023, 468:129771.
[10]WANG Jiahuan, TANG Zewei, GOEL S, et al. Mechanism of Material Removal in Tungsten Carbide-cobalt Alloy during Chemistry Enhanced Shear Thickening Polishing[J]. Journal of Materials Research and Technology, 2023, 25:6865-6879.
[11]WANG Lin, PENG Feng, CHEN Hongyu, et al. The Influence of pH and H2O2 on Surface Quality and Material Removal Rate during W-CMP[J]. The International Journal of Advanced Manufacturing Technology, 2023, 127(9):4097-4110.
[12]SORKHEL S, SUR B. Mechanism of Electro-chemical Grinding[J]. Journal of the Institution of Engineers (India), 1972, 53(1):45-48.
[13]王旭, 赵萍, 吕冰海, 等. 滚动轴承工作表面超精密加工技术研究现状[J]. 中国机械工程, 2019, 30(11):1301-1309.
WANG Xu, ZHAO Ping, LYU Binghai, et al. Research Status of Ultra-precision Machining Technologies for Working Surfaces of Rolling Bearings[J]. China Mechanical Engineering, 2019, 30(11):1301-1309.
[14]NOVAK M, KASUGA H, OHMORI H. Comparison of Roughness and Profile between ELID and Ground Surfaces[C]∥Proceedings of the 7th International Congress of Precision Machining (ICPM 2013). Miskolc, 2013:378-383.
[15]RAFFLES M H, STEPHENSON D J, SHORE P, et al. Electrolytic In-process Dressing Superfinishing of Spherical Bearings Using MetalResin Bond Ultra-fine CBN Wheels[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2011, 225(1):112-122.
[16]JIAO F, MA X, BIE W, et al. Research Status and Prospects of Electrochemical Grinding Technology[J]. Acta Armamentarii, 2022, 43(12):3247-64.
[17]尹龙, 赵波, 郭星晨, 等. 超声辅助内圆磨削40Cr15Mo2VN轴承套圈的试验研究[J]. 中国机械工程, 2021, 32(10):1172-1180.
YIN Long, ZHAO Bo, GUO Xingchen, et al. Experimental Research on Ultrasonic Assisted Internal Grinding of 40Cr15Mo2VN Bearing Rings[J]. China Mechanical Engineering, 2021, 32(10):1172-1180.
[18]LIU Henan, CHENG Jian, WANG Tingzhang, et al. Magnetorheological Finishing of an Irregular-shaped Small-bore Complex Component Using a Small Ball-end Permanent-magnet Polishing Head[J]. Nanotechnology and Precision Engineering, 2019, 2(3):125-129.
[19]WU M Y, GAO H. Experimental Study on Large Size Bearing Ring Raceways Precision Polishing with Abrasive Flowing Machine(AFM) Method[J]. The International Journal of Advanced Manufacturing Technology, 2016, 83(9):1927-1935.
[20]WEI Minghai, LIN Kun, SUN Li. Shear Thickening Fluids and Their Applications[J]. Materials & Design, 2022, 216:110570.
[21]袁巨龙, 王金虎, 吕冰海, 等. 力流变抛光技术[J]. 机械工程学报, 2022, 58(15):21-30.
YUAN Julong, WANG Jinhu, L Binghai, et al. Force Rheological Polishing Technology[J]. Journal of Mechanical Engineering, 2022, 58(15):21-30.
[22]ZHU Wule, BEAUCAMP A. Compliant Grinding and Polishing:a Review[J]. International Journal of Machine Tools and Manufacture, 2020, 158:103634.
[23]WANG Jiahuan, LYU Binghai, JIANG Liang, et al. Chemistry Enhanced Shear Thickening Polishing of Ti-6Al-4V[J]. Precision Engineering, 2021, 72:59-68.
[24]GUO Luguang, WANG Xu, LYU Binghai, et al. Shear-thickening Polishing of Inner Raceway Surface of Bearing and Suppression of Edge Effect[J]. The International Journal of Advanced Manufacturing Technology, 2022, 121(5):4055-4068.
[25]SHAO Qi, LYU Binghai, YUAN Julong, et al. Shear Thickening Polishing of the Concave Surface of High-temperature Nickel-based Alloy Turbine Blade[J]. Journal of Materials Research and Technology, 2021, 11:72-84.
[26]HUANG Linbin, WANG Xu, CHEN Fangyuan, et al. Anhydros-based Shear-thickening Ultra-precision Polishing of KDP Crystal[J]. The International Journal of Advanced Manufacturing Technology, 2023, 125(7):3103-3115.
[27]ZHANG Xiaoyan, DU Haiyan, GONG Xiaoxiao, et al. The Importance of Surface Hydration and Particle Shape on the Rheological Property of Silica-based Suspensions[J]. Ceramics International, 2014, 40(4):5473-5480.
[28]付有志. 粘性挤压磨料流加工边缘效应及抑制策略[D]. 大连:大连理工大学, 2018.
FU Youzhi. Edge Effect of Viscous Extrusion Abrasive Flow Machining and Its Suppression Strategy[D]. Dalian:Dalian University of Technology, 2018.
|