1.School of Electrical and Electronic Engineering,Shandong University of Technology,Zibo,
Shandong,255000
2. School of Electrical Engineering,Shandong University,Jinan,250061
3.School of Electrical and Data Engineering,University of Technology Sydney,Sydney,2007
[1]刘俊磊,曹娜,钱峰,等. 考虑双馈风电机组变流器控制参数的风电场内机组振荡分析[J]. 电力系统自动化,2021,45(10):42-49.
LIU Junlei, CAO Na, QIAN Feng, et al. Analysis of Unit Oscillation in Wind Farm Considering Control Parameters of Converter for DFIG-based Wind Turbine[J]. Automation of Electric Power Systems,2021,45(10):42-49.
[2]杨德健,许益恩,高洪超,等. 计及转速平滑恢复的双馈风电机组自适应频率控制策略[J]. 电力系统保护与控制,2022,50(6):172-179.
YANG Dejian, XU Yien, GAO Hongchao, et al. Self-adaptive Frequency Control Scheme of a Doubly-fed Induction Generator with Smooth Rotor Speed Recovery[J]. Power System Protection and Control,2022,50(6):172-179.
[3]DONG H Y, CHEN N N, LI X Q, et al. Improved Adaptive Robust Control for Low Voltage Ride-through of Front-end Speed Regulation Wind Turbine[J]. IEEE Access,2020,8:55438-55446.
[4]QAZI H W, WALL P, VAL ESCUDERO M V, et al. Impacts of Fault Ride Through Behavior of Wind Farms on a Low Inertia System[J]. IEEE Transactions on Power Systems,2022,37(4):3190-3198.
[5]LIN Y G, TU L, LIU H W, et al. Hybrid Power Transmission Technology in a Wind Turbine Generation System[J]. IEEE/ASME Transactions on Mechatronics,2015,20(3):1218-1225.
[6]IDAN M, LIOR D. Continuously Variable Speed Wind Turbine Transmission Concept and Robust Control[J]. Wind Engineering,2000,24(3):151-167.
[7]JELASKA D, PODRUG S, PERKUIC' M. A Novel Hybrid Transmission for Variable Speed Wind Turbines[J]. Renewable Energy,2015,83:78-84.
[8]YIN W L, DONG Z Y, LIU L, et al. Self-stabilising Speed Regulating Differential Mechanism for Continuously Variable Speed Wind Power Generation System[J]. IET Renewable Power Generation,2020,14(15):3002-3009.
[9]ZHAO X, MAIE P. A Novel Power Splitting Drive Train for Variable Speed Wind Power Generators[J]. Renewable Energy,2003,28(13):2001-2011.
[10]李晓青. 前端调速式风电机组协调优化控制研究[D]. 兰州:兰州交通大学,2022.
LI Xiaoqing. Research on Coordinated Optimal Control of Front-end Speed Regulated Wind Turbine[D]. Lanzhou:Lanzhou Jiaotong University,2022.
[11]YIN W L, WU X, RUI X M. Adaptive Robust Backstepping Control of the Speed Regulating Differential Mechanism for Wind Turbines[J]. IEEE Transactions on Sustainable Energy,2019,10(3):1311-1318.
[12]RUI X M, YIN W L, DONG Y X, et al. Fractional-order Sliding Mode Control for Hybrid Drive Wind Power Generation System with Disturbances in the Grid[J]. Wind Energy,2019,22(1):49-64.
[13]LI X Q, DONG H Y, LI H W, et al. Optimization Control of Front-end Speed Regulation(FESR) Wind Turbine Based on Improved NSGA-II[J]. IEEE Access,2019,7:45583-45593.
[14]YIN W L, RUI X M, LIU L, et al. Operating Performance Analysis on Wind Turbines with the Speed Regulating Differential Mechanism[J]. Journal of Renewable and Sustainable Energy,2018,10:063301.
[15]LI D Y, CAI W C, LI P, et al. Dynamics and Control for a Novel Front-end Speed Regulation(FESR) Wind Turbine[J]. IEEE Transactions on Power Electronics,2018,33(5):4073-4087.
[16]YIN X X, ZHANG W C, ZHAO X W. Current Status and Future Prospects of Continuously Variable Speed Wind Turbines:a Systematic Review[J]. Mechanical Systems and Signal Processing,2019,120:326-340.
[17]李辉,杨超,胡姚刚,等. 抑制风力机疲劳载荷的直接比例谐振独立变桨控制策略[J]. 电力自动化设备,2016,36(3):79-85.
LI Hui, YANG Chao, HU Yaogang, et al. Direct PR Individual Pitch Control for Wind Turbine Fatigue Load Mitigation[J]. Electric Power Automation Equipment,2016,36(3):79-85.
[18]SARKAR S, FITZGERALD B, BASU B. Individual Blade Pitch Control of Floating Offshore Wind Turbines for Load Mitigation and Power Regulation[J]. IEEE Transactions on Control Systems Technology,2020,29(1):305-315.
[19]金鑫,王亚明,李浪,等. 基于LQG的独立变桨控制技术对风电机组气动载荷影响研究[J]. 中国电机工程学报,2016,36(22):6164-6170.
JIN Xin, WANG Yaming, LI Lang, et al. Dynamics Loads Optimization Analysis of Wind Turbine Based on LQG Independent Pitch Control[J]. Proceedings of the CSEE,2016,36(22):6164-6170.
[20]杨文韬,耿华,肖帅,等. 大型风电机组的比例-积分-谐振独立变桨距控制策略[J]. 电力自动化设备,2017,37(1):87-92.
YANG Wentao, GENG Hua, XIAO Shuai, et al. PI-R Individual Pitch Control for Large-scale Wind Turbine[J]. Electric Power Automation Equipment,2017,37(1):87-92.
[21]刘皓明,唐俏俏,张占奎,等. 基于方位角和载荷联合反馈的独立变桨距控制策略研究[J]. 中国电机工程学报,2016,36(14):3798-3806.
LIU Haoming, TANG Qiaoqiao, ZHANG Zhankui, et al. Study of Individual Pitch Control Based on Azimuth Angle and Load Feedback[J]. Proceedings of the CSEE,2016,36(14):3798-3806.
[22]COLOMBO L, CORRADINI M L, IPPOLITI G, et al. Pitch Angle Control of a Wind Turbine Operating above the Rated Wind Speed:a Sliding Mode Control Approach[J]. ISA transactions,2020,96:95-102.
[23]秦斌,周浩,杜康,等. 基于RBF网络的风电机组变桨距滑模控制[J]. 电工技术学报,2013,28(5):37-41.
QIN Bin, ZHOU Hao, DU Kang, et al. Sliding Mode Control of Pitch Angle Based on RBF Neural Network[J]. Transactions of China Electrotechnical Society,2013,28(5):37-41.
[24]赵健,邓志辉,朱冰,等. 基于RBF网络滑模的电动助力制动系统液压力控制[J]. 机械工程学报,2020,56(24):106-114.
ZHAO Jian, DENG Zhihui, ZHU Bing, et al. Sliding Mode Control Based on RBF Network for Hydraulic Pressure in Electric Power-assisted Brake System[J]. Journal of Mechanical Engineering,2020,56(24):106-114.
[25]SINGH P, GIRI D K, GHOSH A K. Robust Backstepping Sliding Mode Aircraft Attitude and Altitude Control Based on Adaptive Neural Network Using Symmetric BLF[J]. Aerospace Science and Technology,2022,126:107653.
[26]玉洁. 电液伺服系统建模及滑模变结构控制方法研究[D]. 郑州:郑州大学,2015.
YU Jie. Research on Sliding Mode Control Based on Electro-hydraulic Servo System Modeling[D]. Zhengzhou:Zhengzhou University,2015.