China Mechanical Engineering ›› 2024, Vol. 35 ›› Issue (10): 1890-1899.DOI: 10.3969/j.issn.1004-132X.2024.10.019

Previous Articles     Next Articles

Blade Pitch Control of Wind Turbines with Speed Regulating Differential Mechanism Considering Impeller Imbalance

ZHANG Wenhua1;YIN Wenliang1;ZHANG Zhenbin2;LIU Lin3;PENG Ke1   

  1. 1.School of Electrical and Electronic Engineering,Shandong University of Technology,Zibo,
    Shandong,255000
    2. School of Electrical Engineering,Shandong University,Jinan,250061
    3.School of Electrical and Data Engineering,University of Technology Sydney,Sydney,2007

  • Online:2024-10-25 Published:2024-11-13

计及叶轮不平衡的差动调速风电机组变桨距控制

张文华1;尹文良1;张祯滨2;刘琳3;彭克1   

  1. 1.山东理工大学电气与电子工程学院,淄博,255000
    2.山东大学电气工程学院,济南,250061
    3.悉尼科技大学电气与数据工程学院,悉尼,2007

  • 作者简介:张文华,男,2000年生,硕士研究生。研究方向为风力发电并网运行及其控制。E-mail:22504040033@stumail.sdut.edu.cn。
  • 基金资助:
    国家自然科学基金(52005306);山东省自然科学基金(ZR2020QE220);山东省高等学校青创团队发展计划(2022KJ323)

Abstract: To ensure the energy efficiency and stability of the SRDM-based WTs across the entire wind speed ranges, a control method was proposed based on radial basis function(RBF) neural networks and sliding mode variable structure control(SMVSC), which enabled precise and rapid pitch angle adjustment for SRDM-based WTs, while considering the effects of wind wheel imbalance, wind shear, and tower shadow. This approach incorporated the sliding mode error into the adaptive law, allowing for the effective suppression of chatting effects by dynamically adjusting the weights and center values of the RBF neural network in real-time. A simulation model of 1.5 MW SRDM-based WTs was established, and then verified using the built experimental platform, through which the control performance of the proposed RBF-SMVSC method was compared and validated. The results indicate that, compared to independent pitch methods with traditional proportional-integral(PI) and SMC, the proposed control method may adjust WTs speed and power output more rapidly and accurately under various wind speed conditions, and significantly enhance energy capture and reduce unbalanced loads.

Key words: wind turbine(WT), speed regulating differential mechanism(SRDM), blade pitch control, neural network, sliding mode control(SMC), unbalanced fault

摘要: 为保证差动调速型风电机组在全风速区间内运行的能量效率及稳定性,在考虑叶轮不平衡、风剪切及塔影效应的影响下,提出了一种基于径向基(RBF)神经网络的滑模变结构控制(SMVSC)方法,以完成差动调速型风力机桨距的准确、快速调节。该方法将滑模误差引入其控制的自适应率中,通过在线调整RBF神经网络的权值和中心值来有效地抑制抖振效应。搭建了1.5 MW差动调速型风电机组仿真模型,在利用物理试验平台对仿真模型进行原理验证后,对所提RBF-SMVSC方法的控制效果进行了对比验证。研究结果表明:相较于PI和传统滑模控制独立变桨方法,在不同的风速条件下,所提控制方法不仅可以更加快速、精确地调节风力机转速和功率输出,还可以有效提高机组的能量捕获效率,减小不平衡载荷。

关键词: 风电机组, 差动调速, 变桨距控制, 神经网络, 滑模控制, 不平衡故障

CLC Number: