[1]吕学祜, 郭前建, 王昊天, 等. 数控机床误差补偿关键技术综述[J]. 航空制造技术, 2022, 65(11):104-111.
LYU Xuehu, GUO Qianjian, WANG Haotian, et al. Summary of Key Technologies for Error Compensation of CNC Machine Tools[J]. Aeronautical Manufacturing Technology, 2022, 65(11):104-111.
[2]LI Yang, YU Maolin, BAI Yinming, et al. A Review of Thermal Error Modeling Methods for Machine Tools[J]. Applied Sciences, 2021, 11(11):5216.
[3]刘阔, 韩伟, 王永青, 等. 数控机床进给轴热误差补偿技术研究综述[J]. 机械工程学报, 2021, 57(3):156-173.
LIU Kuo, HAN Wei, WANG Yongqing, et al. Review on Thermal Error Compensation for Feed Axes of CNC Machine Tools[J]. Journal of Mechanical Engineering, 2021, 57(3):156-173.
[4]DING Shuang, HUANG Xiaodiao, YU Chunjian, et al. Identification of Different Geometric Error Models and Definitions for the Rotary Axis of Five-axis Machine Tools[J]. International Journal of Machine Tools and Manufacture, 2016, 100:1-6.
[5]British Standards Institution. Test Code for Machine Tools Part 1:Geometric Accuracy of Machines Operating under No-load or Quasi-static Load Conditions:ISO 230-7[S]. Geneva:International Organization for Standardization,2012.
[6]British Standards Institution. Part 7:Geometric accuracy of axes of rotation:ISO 230-7[S]. Geneva:International Organization for Standardization,2015.
[7]项四通, 杜正春, 杨建国. 数控机床几何与热误差测量和建模研究新进展[J]. 机械设计与研究, 2019, 35(6):52-57.
XIANG Sitong, DU Zhengchun, YANG Jianguo. Recent Advances in Measurement and Modeling of Geometric and Thermal Error of CNC Machine Tools[J]. Machine Design & Research, 2019, 35(6):52-57.
[8]LI Qingzhao, WANG Wei, ZHANG Jing, et al. All Position-dependent Geometric Error Identification for Rotary Axes of Five-axis Machine Tool Using Double Ball Bar[J]. The International Journal of Advanced Manufacturing Technology, 2020, 110(5):1351-1366.
[9]徐凯, 李国龙, 李喆裕, 等. 基于参数化建模的旋转轴误差快速辨识方法[J]. 仪器仪表学报, 2020, 41(8):21-29.
XU Kai, LI Guolong, LI Zheyu, et al. Fast Error Identification Method for Rotary Axis Based on Parametric Modeling[J]. Chinese Journal of Scientific Instrument, 2020, 41(8):21-29.
[10]ZARGARBASHI S H H, MAYER J R R. Assessment of Machine Tool Trunnion Axis Motion Error, Using Magnetic Double Ball Bar[J]. International Journal of Machine Tools and Manufacture, 2006, 46(14):1823-1834.
[11]梁小冰, 卢耀安, 王成勇. 双转台五轴机床旋转轴位置无关几何误差的辨识[J]. 中国机械工程, 2023, 34(21):2585-2591.
LIANG Xiaobing, LU Yaoan, WANG Chengyong. Identification of Position-independent Geometric Errors for Rotary Axes of Five-axis Table-tilting Machine Tools[J]. China Mechanical Engineering, 2023, 34(21):2585-2591.
[12]FU Guoqiang, FU Jianzhong, XU Yuetong, et al. Accuracy Enhancement of Five-axis Machine Tool Based on Differential Motion Matrix:Geometric Error Modeling, Identification and Compensation[J]. International Journal of Machine Tools and Manufacture, 2015, 89:170-181.
[13]郭世杰, 武建新, 乔冠, 等. 数控机床几何误差正弦低次多项式参数化建模与应用研究[J]. 仪器仪表学报, 2020, 41(10):136-146.
GUO Shijie, WU Jianxin, QIAO Guan, et al. Study on Parametric Modeling and Application of Sinusoidal Low-order Polynomials for Geometric Error of CNC Machine Tool[J]. Chinese Journal of Scientific Instrument, 2020, 41(10):136-146.
[14]李锁, 吴文江, 哈韬, 等. 基于数据驱动的机床热误差补偿技术研究[J]. 小型微型计算机系统, 2019, 40(7):1569-1572.
LI Suo, WU Wenjiang, HA Tao, et al. Research on Thermal Error Compensation Technology of Machine Tools Based on Data Driving[J]. Journal of Chinese Computer Systems, 2019, 40(7):1569-1572.
[15]British Standards Institution. Test Code for Machine Tools—Part 3:Determination of Thermal Effects:ISO 230-3[S]. Geneva:International Organization for Standardization, 2020.
[16]魏弦. 数控磨齿机床热误差鲁棒建模技术及补偿研究[D]. 西安:西安理工大学, 2020.
WEI Xian. Study on Robust Modeling and Compensation of Thermal Error for NC Gear Grinding Machine Tool[D]. Xian:Xian University of Technology, 2020.
[17]何振亚, 傅建中, 陈子辰. 基于球杆仪检测五轴数控机床主轴的热误差[J]. 光学精密工程, 2015, 23(5):1401.
HE Zhenya, FU Jianzhong, CHEN Zichen. Thermal Error Measurement of Spindle for 5-axis CNC Machine Tool Based on Ball Bar[J]. Optics and Precision Engineering, 2015, 23(5):1401.
[18]WU Chengyang, XIANG Sitong, XIANG Wansheng. Thermal Error Modeling of Rotary Axis Based on Convolutional Neural Network[J]. Journal of Manufacturing Science and Engineering, 2021, 143(5):051013.
[19]徐凯, 李国龙, 李喆裕, 等. 直线轴热定位误差解耦与分步建模研究[J]. 仪器仪表学报, 2022, 43(7):72-81.
XU Kai, LI Guolong, LI Zheyu, et al. Research on Decoupling and Step-by-step Modelling of Thermal Positioning Error of the Linear Axis[J]. Chinese Journal of Scientific Instrument, 2022, 43(7):72-81.
[20]XU Kai, LI Guolong, LI Zheyu, et al. A General Identification Method for Position-dependent Geometric Errors of Rotary Axis with Single-axis Driven[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(3):1171-1191.
[21]LI Bo, TIAN Xitian, ZHANG Min. Thermal Error Modeling of Machine Tool Spindle Based on the Improved Algorithm Optimized BP Neural Network[J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(1):1497-1505.
[22]李彬, 张云, 王立平, 等. 基于遗传算法优化小波神经网络数控机床热误差建模[J]. 机械工程学报, 2019, 55(21):215-220.
LI Bin, ZHANG Yun, WANG Liping, et al. Modeling for CNC Machine Tool Thermal Error Based on Genetic Algorithm Optimization Wavelet Neural Networks[J]. Journal of Mechanical Engineering, 2019, 55(21):215-220.
[23]XIANG Sitong, LU Hongxing, YANG Jianguo. Thermal Error Prediction Method for Spindles in Machine Tools Based on a Hybrid Model[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2015, 229(1):130-140.
[24]王培桐, 范晋伟, 任行飞, 等. 基于热传导和卷积神经网络的磨床主轴热误差预测[J]. 光学精密工程, 2023, 31(1):129-140.
WANG Peitong, FAN Jinwei, REN Xingfei, et al. Thermal Error Prediction for Grinding Machine Spindle Based on Heat Conduction and Convolutional Neural Network[J]. Optics and Precision Engineering, 2023, 31(1):129-140.
[25]HOCHREITER S, SCHMIDHUBER J. Long Short-term Memory[J]. Neural Computation, 1997, 9(8):1735-1780.
[26]LIU Jialan, MA Chi, GUI Hongquan, et al. Thermally-induced Error Compensation of Spindle System Based on Long Short Term Memory Neural Networks[J]. Applied Soft Computing, 2021, 102:107094.
[27]GUO Jiahao, XIONG Qingyu, CHEN Jing, et al. Study of Static Thermal Deformation Modeling Based on a Hybrid CNN-LSTM Model with Spatiotemporal Correlation[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119(3):2601-2613.
|