[1]ABELE E, ALTINTAS Y, BRECHER C. Machine Tool Spindle Units[J]. CIRP Annal:Manufacturing Technology, 2010, 59(2):781-802.
[2]PORTMAN V T, KUSHNIR E. Drives Stiffness of 5-Axis Machine Designs:Evaluation and Comparison by Schur Complement Eigenvalues[J]. Procedia CIRP, 2023, 118:169-174.
[3]ZHANG Xiaohong, CHEN Xiaoming, YAN Ke, et al. Transient Thermal Properties Investigation for Precision Bearing-spindle System Considering Fixed-position Preload and Lubricant Viscosity-temperature Effect[J]. Journal of Manufacturing Processes, 2023, 96(30):41-53.
[4]LIU Yunsheng, MIAO Enming, LIU Hui, et al. Robust Machine Tool Thermal Error Compensation Modelling Based on Temperature-sensitive Interval Segmentation Modelling Technology[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106:655-669.
[5]YAO Xiaopeng, HU Teng, YIN Guofu, et al. Thermal Error Modeling and Prediction Analysis Based on OM Algorithm for Machine Tools Spindle[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106:3345-3356.
[6]LI Guolong, KE Hao, LI Chuanzhen, et al. Thermal Error Modeling of Feed Axis in Machine Tools Using Particle Swarm Optimization-based Generalized Regression Neural Network[J]. Journal of Computing and Information Science in Engineering, 2020, 20(2):1-13.
[7]邓小雷, 盛泽枫, 张江林, 等. 基于不规则元胞的主轴温度-结构场耦合热拓扑优化设计方法[J]. 浙江大学学报(工学版), 2020, 54(1):23-32.
DENG Xiaolei, SHENG Zefeng, ZHANG Jianglin, et al. Thermal Topology Optimization Design Method of Spindle under Temperature-Structure Field Coupling Condition Based on Irregular Cell[J]. Journal of Zhejiang University (Engineering Science), 2020, 54(1):23-32.
[8]张运涛, 李以农, 张志达, 等. 基于改进粒子群算法的非对称传动主轴多目标优化[J]. 振动与冲击, 2022, 41(2):130-139.
ZHANG Yuntao, LI Yinong, ZHANG Zhida, et al. Multi Objective Optimization of an Asymmetric Transmission Spindle Based on Improved Particle Swarm Optimization[J]. Journal of Vibration and Shock, 2022, 41(2):130-139.
[9]何吉祥, 李聪波, 吕岩, 等. 数控车床主轴单元结构节能性优化设计[J]. 中国机械工程, 2021, 32(11):1330-1340.
HE Jixiang, LI Congbo, LYU Yan, et al. Structural Design Optimization of Spindle Unit of CNC Lathes for Energy Saving[J]. China Mechanical Engineering, 2021,32(11):1330-1340.
[10]吴永伟, 邬再新, 鲍政伟. 卧式 HMC500 主轴系统热特性分析及结构优化[J].中国机械工程, 2018, 29(13):1596-1602.
WU Yongwei, WU Zaixin, BAO Zhenwei. Thermal Characteristics Analysis and Structural Optimization of Horizontal HMC500 Spindle Systems[J]. China Mechanical Engineering, 2018, 29(13):1596-1602.
[11]LI Zhaolong, ZHU Wenming, ZHU Bo, et al. Simulation Analysis Model of High-speed Motorized Spindle Structure Based on Thermal Load Optimization[J]. Case Studies in Thermal Engineering, 2023, 44:1-10.
[12]佐田登志夫, 佐藤和信, 竹内芳美, 等. 机床结构的刚度分析系统——热刚度分析[J]. 装备机械, 1979(2):18-25.
TOSHIFU Sato, TOSHIFU Sato, NOBUNAGA Takeuchi, et al. The Stiffness Analysis System of Machine Tool Structure—Thermal Stiffness Ana-lysis[J]. The Magazine on Equipment Machinery 1979(02):18-25.
[13]JIANG T, CHIREHDAST M. A Systems Approach to Structural Topology Optimization:Designing Optimal Connections[J]. Journal of Mechanical Design, 2010, 119(1):40-47.
[14]MORI M, MIZUGUCHI H, FUJISHIMA M, et al. Design Optimization and Development of CNC Lathe Headstock to Minimize Thermal Deformation [J]. CIRP Annals:Manufacturing Technology, 2009, 58 (1):331-334.
[15]LI Q, STEVEN P G, OSVALDO M, et al. Shape and Topology Design for Heat Conduction by Evolutionary Structural Optimization[J]. International Journal of Heat and Mass Transfer, 1999, 42(17):3361-3371.
[16]叶开沅, 唐燮黎. 具有非零最小弯曲刚度梁在多载荷情况作用下的等强度设计[J]. 应用数学和力学, 1988(2):107-115.
YE Kaiyuan, TANG Xieli. Uniform Strength Design of Beams with Non-zero Minimum Flexural Rigidity under Multiple Loadings[J]. Applied Mathematics and Mechanics,1988(2):107-115.
[17]叶开沅, 俞焕然. 超静定等强度梁[J]. 兰州大学学报(自然科学版), 1983(增刊2):1-9.
YE Kaiyuan, YU Huanran. Static-indeterminant Equi-strength Beams[J]. Journal of Lanzhou University(Natural Sciences), 1983(S2):1-9.
[18]唐燮黎, 叶开沅. 静不定梁的等强度设计[J]. 应用数学和力学, 1985(12):1053-1059.
TANG Xieli, YE Kaiyuan. Equi-strength Design for Statically Indeterminate Beams[J]. Applied Mathematics and Mechanics, 1985(12):1053-1059.
[19]洪有为. 机床主轴系统热特性建模分析及结构优化设计[D]. 南京:东南大学, 2005.
HONG Youwei. System Characteristic of Machine Tool Spindle Modeling and Optimization of the Thermal[D]. Nanjing:Southeast University, 2005.
[20]高尚晗, 孟光. 机床主轴系统动力学特性研究进展[J]. 振动与冲击, 2007(6):103-109.
GAO Shanghan, MENG Guang. Advances in Research on Dynamic Characteristics of Machine Tool Spindle[J]. Journal of Vibration and Shock, 2007(6):103-109.
[21]范晋伟, 朱晓勇, 杨万然, 等. 应用能量输入与耗散反馈原理的机床主轴热误差分析与研究[J]. 现代制造工程, 2008(7):9-11.
FAN Jinwei, ZHU Xiaoyong, YANG Wanran, et al. Analysis and Study on Thermal Error of Machine Tool Spindle Based on Feedback Principle of Energy Input and Dissipation[J]. Modern Manufacturing Engineering, 2008(7):9-11.
[22]庞静珠, 李蓓智, 杨建国, 等. 高速磨床电主轴热刚度耦合模型的分析与优化[J]. 东华大学学报(自然科学版), 2012, 38(4):471-474.
PANG Jingzhu, LI Peizhi, YANG Jianguo, et al. Analysis and Optimization for a Coupled Stiffness and Thermal Model of High-speed Grinding Motorized Spindle[J]. Journal of Donghua University (Natural Science), 2012, 38(4):471-474.
[23]田久良, 洪军, 朱永生, 等. 机床主轴-轴承系统热-力耦合模型及其动态性能研究[J]. 西安交通大学学报, 2012, 46(7):63-68.
TIAN Jiuliang, HONG Jun, ZHU Yongsheng, et al. Thermo-mechanical Coupling Model and Dynamical Characteristics of Machining Spindle-bearing System[J]. Journal of Xian Jiaotong University, 2012, 46(7):63-68.
[24]邓小雷. 数控机床主轴系统多物理场耦合热态特性分析研究[D]. 杭州:浙江大学, 2014.
DENG Xiaolei. Research on Analysis of Multi-field Coupling Thermal Characteristics for CNC Machine Tool Spindle System[D]. Hangzhou:Zhejiang University, 2014.
[25]李金华, 刘永贤, 仪登丽, 等. 基于有限元的精密主轴多目标优化设计研究[J]. 机床与液压, 2012, 40(13):5-7.
LI Jinhua, LIU Yongxian, YI Dengli, et al. Study on Multi-objective Optimum Design of Precision Spindle Based on FEM[J]. Machine Tool & Hydraulics, 2012, 40(13):5-7.
[26]蒋书运, 林圣业. 高速电主轴转子-轴承-外壳系统动力学特性研究[J]. 机械工程学报, 2021, 57(13):26-35.
JIANG Shuyun, LIN Shengye. Study on Dynamic Characteristics of Motorized Spindle Rotor-bearing-housing System[J]. Journal of Mechanical Engineering, 2021, 57(13):26-35.
[27]熊万里, 孙文彪, 刘侃, 等. 高速电主轴主动磁悬浮技术研究进展[J]. 机械工程学报, 2021, 57(13):1-17.
XIONG Wanli, SUN Wenbiao, LIU Kan, et al. Active Magnetic Bearing Technology Development in High-speed Motorized Spindles[J]. Journal of Mechanical Engineering, 2021, 57(13):1-17.
[28]黄华, 李旭东, 赵丛林. 基于热弹性理论与温度场积分中值定理的电主轴热误差研究[J]. 仪器仪表学报, 2022, 43(8):109-121.
HUANG Hua, LI Xudong, ZHAO Conglin. Study on Thermal Error of Motorized Spindle Based on Thermoelastic Theory and Mean-value Theorem of Integral of Temperature Field[J]. Chinese Journal of Scientific Instrument, 2022, 43(8):109-121.
[29]洪兆溪, 冯毅雄, 娄山河, 等. 复杂产品不确定性智能设计研究综述与展望[J]. 机械工程学报, 2023, 59(19):213-236.
HONG Zhaoxi, FENG Yixiong, LOU Shanhe, et al. Overview and Prospects of Uncertain Intelligent Design for Complex Products[J]. Journal of Mechanical Engineering, 2023, 59(19):213-236.
|