中国机械工程 ›› 2025, Vol. 36 ›› Issue (10): 2405-2412.DOI: 10.3969/j.issn.1004-132X.2025.10.030
• 工程前沿 • 上一篇
收稿日期:2024-09-23
出版日期:2025-10-25
发布日期:2025-11-05
通讯作者:
董国军
作者简介:董国军*(通信作者),男,1974年生,副教授。研究方向为硬脆难加工材料的高效精密加工技术、超精密加工及纳米级切削加工技术等。E-mail:dongguojun@hit.edu.cn。
基金资助:
Guojun DONG(
), Ruida LAI, Yong DAI, Zhiqing GUO, Mengwei WU
Received:2024-09-23
Online:2025-10-25
Published:2025-11-05
Contact:
Guojun DONG
摘要:
以松花江河冰为研究对象,从河冰细观结构研究入手,结合超声辅助切削验证实验,对超声辅助切割冰块的效果以及提高生产效率的可行性进行分析。仿真结果表明,对于晶体复杂的天然河冰,超声辅助切削能减小约38%的切削力。验证实验表明,超声辅助切削在提高进给速度的同时能保证冰体切削质量,不易发生崩边和裂纹,相较于传统切削,对河冰生产质量和效率的提高效果显著,超声辅助切削用于大规模制备标准冰块是可行的。
中图分类号:
董国军, 赖睿达, 代勇, 郭志清, 吴孟为. 基于河冰细观结构的超声辅助切削仿真分析及验证实验[J]. 中国机械工程, 2025, 36(10): 2405-2412.
Guojun DONG, Ruida LAI, Yong DAI, Zhiqing GUO, Mengwei WU. Ultrasonic Assisted Cutting Simulation and Validation Experimental Research Based on River Ice Mesostructure[J]. China Mechanical Engineering, 2025, 36(10): 2405-2412.
| 项目名称 | 材料属性 | 数值 |
|---|---|---|
| 冰材料 | 密度 | 930 kg/m3 |
| 弹性模量 | 1 GPa | |
| 泊松比 | 0.3 | |
| 压缩强度 | 2 MPa | |
| 塑性应力 | 2.1 MPa | |
| 塑性应变 | 0.15 | |
| 失效应变 | 0.12 | |
| 粘聚单元 | 密度 | 930 kg/m3 |
| 弹性模量 | 1 GPa | |
| 法向应力 | 1.04 MPa | |
| 断裂能 | 52 J | |
| 单锯齿 | 密度 | 8100 kg/m3 |
| 弹性模量 | 225 GPa | |
| 泊松比 | 0.33 | |
| 前角 | 10° | |
| 后角 | 30° | |
| 偏齿量 | 0.3 mm | |
| 偏齿角 | 5° |
表1 仿真参数设置总表
Tab.1 Summary table of simulation parameter settings
| 项目名称 | 材料属性 | 数值 |
|---|---|---|
| 冰材料 | 密度 | 930 kg/m3 |
| 弹性模量 | 1 GPa | |
| 泊松比 | 0.3 | |
| 压缩强度 | 2 MPa | |
| 塑性应力 | 2.1 MPa | |
| 塑性应变 | 0.15 | |
| 失效应变 | 0.12 | |
| 粘聚单元 | 密度 | 930 kg/m3 |
| 弹性模量 | 1 GPa | |
| 法向应力 | 1.04 MPa | |
| 断裂能 | 52 J | |
| 单锯齿 | 密度 | 8100 kg/m3 |
| 弹性模量 | 225 GPa | |
| 泊松比 | 0.33 | |
| 前角 | 10° | |
| 后角 | 30° | |
| 偏齿量 | 0.3 mm | |
| 偏齿角 | 5° |
| 工艺参数 | 数值 |
|---|---|
| 锯条转速/(r·min-1) | 1450 |
| 进给速度/(mm·s-1) | 20,30,40,50,60 |
| 超声频率/kHz | 20 |
| 超声振幅/mm | 0.01 |
表2 验证实验参数
Tab.2 Verification experimental parameters
| 工艺参数 | 数值 |
|---|---|
| 锯条转速/(r·min-1) | 1450 |
| 进给速度/(mm·s-1) | 20,30,40,50,60 |
| 超声频率/kHz | 20 |
| 超声振幅/mm | 0.01 |
| [1] | 周姣.黄河冰细观代表体尺寸定量分析及其力学性能数值模拟[D].郑州:郑州大学,2022. |
| ZHOU Jiao. Size Determination and Mechanical Properties Simulation of Representative Volume Element of Yellow River Ice[D]. Zhengzhou:Zhengzhou University, 2022. | |
| [2] | PERVIER M A, PERVIER H, HAMMOND D W. Observation of Microstructures of Atmospheric Ice Using a New Replica Technique[J]. Cold Regions Science and Technology, 2017, 140:54-57. |
| [3] | TALALAY P G. Exploration of Gamburtsev Subglacial Mountains, East Antarctica:Background and Plans for the Near Future[J]. Geography, Environment, Sustainability, 2014, 7(1):5-15. |
| [4] | NIZERY A. Electrothermic Rig for the Boring of Glaciers[J]. EOS, Transactions American Geophysical Union, 1951,32:66-72. |
| [5] | TALALAY P G. Subglacial Till and Bedrock Drilling[J]. Cold Regions Science and Technology, 2013, 86:142-166. |
| [6] | WANG Chunyang, XUE Yanzhou, WANG Chaoying,et al .Comparative Study of the ReaxFF and Potential Models with Density Functional Theory for Simulating Hexagonal Ice[J]. Computational Materials Science,2020,177:109546. |
| [7] | DIPRINZIO C L, WILEN L A, ALLEY R B, al et, Fabric and Texture at Siple Dome,Antarctica[J].Journal of Glaciology,2005,51 (173):281-290. |
| [8] | 王国志,黄文峰,李志军,等. 大庆红旗泡水库冰内部组构观测方法[J].黑龙江水专学报, 2009, 36(4):75-78. |
| WANG Guozhi, HUANG Wenfeng, LI Zhijun, et al. Observations on the Inner Structures of Hongqi-pao Reservoir Ice in Daqing[J]. Journal of Heilongjiang Hydraulic Engineering, 2009, 36(4):75-78. | |
| [9] | 王娟,黄樾,李志军,等.黄河内蒙古河段封冻期冰晶结构特征分析[J].人民黄河,2021,43(6):41-45. |
| WANG Juan, HUANG Yue, LI Zhijun, et al. Analysis of Ice Crystal Structure Characteristics of the Yellow River in Inner Mongolia During Freezing Period[J]. Yellow River, 2021,43(6):41-45. | |
| [10] | 陈晓东,王安良,季顺迎.海冰在单轴压缩下的韧-脆转化机理及破坏模式[J].中国科学:物理学、力学、天文学, 2018, 48:124601. |
| CHEN Xiaodong, WANG Anlang, JI Shunying. The Study on Brittle-ductile Transition Mechanism and Failure Mode of Sea Ice under Uniaxial Compression [J]. Science China:Physics, Mechanics & Astronomy, 2018, 48:124601. | |
| [11] | ZHENG Wen, ZHOU Ming, ZHOU Li. Influence of Process Parameters on Surface Topography in Ultrasonic Vibration-assisted End Grinding of SiCp/Al Composites[J].The International Journal of Advanced Manufacturing Technology,2017, 91, 2347-2358. |
| [12] | 吴帮福,丁文锋,曹洋.颗粒增强钛基复材轴向超声振动辅助磨削实验研究[J].航空制造技术,2021,64(11):96-102. |
| WU Bangfu, DING Wenfeng, CAO Yang. Experimental Study on Axial Ultrasonic Vibration-assisted Grinding of Particle Reinforced Titanium Matrix Composites[J]. Aeronautical Manufacturing Technology, 2021, 64(11):96-102. | |
| [13] | LI Zheng, DING Wengfeng, et al. Grinding Performance and Surface Integrity of Particulate-reinforced Titanium Matrix Composites in Creep-feed Grinding[J]. The International Journal of Advanced Manufacturing Technology,2018, 94(9):3917-3928. |
| [14] | 张俊杰,刘英想,胡王杰,等.TC4钛合金纵弯超声振动铣削装置及其加工性能研究[J].航空制造技术,2022,65(8):14-21. |
| ZHANG Junjie, LIU Yingxiang, HU Wangjie, et al. Study on Longitudinal-bending Hybrid Ultrasonic Vibration Milling Device and Machining Performance of TC4 Titanium Alloy[J]. Aeronautical Manufacturing Technology, 2022, 65(8):14-21. | |
| [15] | 王福吉,葛连恒,胡晓杭,等.CF/PEEK单向板纵-扭超声振动辅助铣削性能及工艺优化[J].复合材料学报,2024,8(17):1-14. |
| WANG Fuji, GE Lianheng, HU Xiaohang, et al. Longitudinal-torsional Ultrasonic Vibration-assisted Milling Performance and Process Optimization of CF/PEEK Unidirectional Plates[J]. Acta Materiae Compositae Sinica, 2024,8(17):1-14. | |
| [16] | 郭颍奎,孟闻远.冰的力学性能实验研究[J].华北水利水电大学学报:自然科学版, 2015, 36(3):40-43. |
| GUO Yinkui, MENG Wenyuan. Experimental Investigations on Mechanical Properties of Ice[J]. Journal of North China University of Water Resources and Electric Power ( Natural Science Edition), 2015, 36(3):40-43. | |
| [17] | WANG Dongyang, SHAO Bo, QI Jilin, al et, Study on Strain Localization of Frozen Sand Based on Uniaxial Compression Test and Discrete Element Simulation[J]. Cold Regions Science and Technology,2024, 223:104221. |
| [18] | LU Wenjun, RAED L, SVEINUNG L, al et, Fracture of an Ice Floe :Local Out-of-plane Flexural Failures Versus Global In-plane Splitting Failure[J]. Cold Regions Science and Technology,2016, 123:1-13. |
| [19] | 周陈超. 不同破坏准则下极地海冰有限元材料和粘聚单元法的应用[D].镇江:江苏科技大学,2022. |
| ZHOU Chenchao. Polar Sea Ice Finite Element Materials under Different Failure Criteria and Application of Cohesive Element[D]. Zhenjiang:Jiangsu University of Science and Technology, 2022. | |
| [20] | 蒋昱妍. 基于粘聚单元法的海洋结构物-层冰碰撞数值模拟[D].大连:大连理工大学,2020. |
| JIANG Yuyan. Numerical Simulation of Marine Structure-level Ice Collision Based on Cohesive Element Method[D]. Dalian:Dalian University of Technology, 2020. |
| [1] | 张硕, 邹平, 方锐, 周亮. 微织构车刀椭圆超声辅助切削加工性能研究[J]. 中国机械工程, 2023, 34(03): 287-291,299. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||