中国机械工程 ›› 2025, Vol. 36 ›› Issue (10): 2397-2404.DOI: 10.3969/j.issn.1004-132X.2025.10.029

• 工程前沿 • 上一篇    

连退机组直火加热工艺与控制技术的开发

杨永辉1(), 祁奔1, 王浩宇1, 白振华1,2()   

  1. 1.燕山大学国家冷轧板带装备及工艺工程技术研究中心, 秦皇岛, 066004
    2.燕山大学亚稳材料制备技术与科学国家重点实验室, 秦皇岛, 066004
  • 收稿日期:2024-07-29 出版日期:2025-10-25 发布日期:2025-11-05
  • 通讯作者: 白振华
  • 作者简介:杨永辉,男,1997年生,博士研究生。研究方向为平整、退火领域工艺参数优化及质量控制。E-mail:2636981928@qq.com
    白振华*(通信作者),男,1975年生,教授。研究方向为冷轧、热轧、退火、平整、二次冷轧、涂镀过程产品质量控制等。E-mail:bai_zhenhua@aliyun.com
  • 基金资助:
    河北省自然科学基金(E2024203125);河北省科学技术研究与发展计划-科技支撑计划(23280101Z);河北省高等学校科学技术研究项目(CXY2023012);河北省重大科技成果转化专项(22281001Z);辽宁省教育厅高等学校基本科研项目(LJKZZ20220040);中央引导地方科技发展资金(236Z1024G)

Development of Direct Flame Impingement Heating Processes and Control Technology for Continuous Annealing Units

Yonghui YANG1(), Ben QI1, Haoyu WANG1, Zhenhua BAI1,2()   

  1. 1.National Engineering Research Center for Equipment and Technology of Cold Strip Rolling,Yanshan University,Qinhuangdao,Hebei,066004
    2.State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao,Hebei,066004
  • Received:2024-07-29 Online:2025-10-25 Published:2025-11-05
  • Contact: Zhenhua BAI

摘要:

基于高斯分布的直接火焰冲击热流密度模型,结合直接火焰冲击加热烧嘴的特性、烧嘴的布置情况及其与带钢的位置关系,将空烧补偿热量以类侧墙辐射的方式作用到带钢上,建立了带钢横向线热流量分布模型。根据此模型分析边部烧嘴天然气流量折减变化对带钢横向线热流量的影响。以线热流量在带钢宽度方向上分布均匀度为优化目标,开发出直火加热段边部烧嘴天然气流量控制技术。将该技术应用于生产实践,根据最优折减系数调节天然气流量,可得到适合于不同宽度带钢加热时的边部喷嘴与中部喷嘴的天然气流量设定值。以典型带宽1300 mm、1100 mm、900 mm为例,中部单个烧嘴流量分别为12.6 m3/h、12.1 m3/h、11.8 m3/h时,最优折减系数分别为0.89、0.78、0.65,边部单个烧嘴流量分别取11.21 m3/h、9.44 m3/h、7.67 m3/h。此时,炉内带钢横向受热均匀,带钢在宽度方向上的温度分布满足生产需求,直火加热炉内带钢运行的稳定性大大提高。

关键词: 连退机组, 直接火焰冲击加热, 横向受热, 热流密度, 天然气流量

Abstract:

Based on flame direct impact heat flux model with Gaussian distribution, combined with characteristics of direct flame impingement heating burner, the arrangement of the burner and the position relationship with strip steel, the air burning compensation heat was applied to strip steel in a sidewall-like radiation, and the transverse line heat flow distribution model of the strip was established. According to this model, the influences of natural gas flow reduction changes of the edge burner on heat flow rate of transverse line of the strip were analyzed. With the optimization goal of the uniformity of the distribution of linear heat flow in width direction of the strip steels, the natural gas flow control technology of the burner at the edge of direct fire heating sections was developed. By applying this technology to production practice, the natural gas flow rate may be adjusted according to the optimal reduction factor, and the natural gas flow rate setting value suitable for the edge nozzle and the middle nozzle when the strip steels were heated with different widths may be obtained. Taking the typical widths of 1300 mm, 1100 mm and 900 mm as examples, when the flow rate of a single burner in the middle is as 12.6 m3/h, 12.1 m3/h and 11.8 m3/h, the optimal reduction coefficients are as 0.89, 0.78 and 0.65, respectively, and the flow rate of a single burner at the edge is as 11.21 m3/h, 9.44 m3/h and 7.67 m3/h, respectively. Thus, the strip steels in the furnace are evenly heated laterally, the temperature distributions of the strip steels in width direction meet the production demands, and the stability of the strip operation in direct fire heating furnace is greatly improved.

Key words: continuous annealing unit, direct flame impingement heating, transverse heating, heat flux, natural gas flow rate

中图分类号: