中国机械工程 ›› 2026, Vol. 37 ›› Issue (1): 147-161.DOI: 10.3969/j.issn.1004-132X.2026.01.016
• 机械基础工程 • 上一篇
收稿日期:2024-11-09
出版日期:2026-01-25
发布日期:2026-02-05
通讯作者:
李建华
作者简介:彭才华,男,1989年生,博士研究生。研究方向为可靠性分析与寿命预测。发表论文4篇。E-mail: pch5616854@163.com基金资助:
PENG Caihua(
), LI Jianhua(
), REN Lina, JIA Shilin
Received:2024-11-09
Online:2026-01-25
Published:2026-02-05
Contact:
LI Jianhua
摘要:
现有的剩余寿命在线预测方法通常基于贝叶斯理论更新随机退化模型的漂移参数,但未更新扩散参数,为此,提出一种同时更新漂移与扩散参数的新方法。建立了考虑多种退化模式的随机退化模型,并依据首达时间原理推导出寿命及剩余寿命概率密度函数。先采用极大似然法离线估计模型的初始参数,再结合贝叶斯原理与期望最大化算法在线更新漂移参数与扩散参数。电容退化数据、陀螺仪漂移数据、铝合金构件裂纹增长数据验证了所提方法的有效性。
中图分类号:
彭才华, 李建华, 任丽娜, 贾世琳. 带测量误差的设备非线性退化建模与剩余寿命在线预测[J]. 中国机械工程, 2026, 37(1): 147-161.
PENG Caihua, LI Jianhua, REN Lina, JIA Shilin. Nonlinear Degradation Modeling and Online Prediction of Remaining Life for Equipment with Measurement Errors[J]. China Mechanical Engineering, 2026, 37(1): 147-161.
| 方法 | ETMSE/月2 | ERMSE/月 | EMAE/月 |
|---|---|---|---|
| 方法Ⅰ | 326.2281 | 24.4025 | 4.5532 |
| 方法Ⅱ | 73.3883 | 0.7862 | 0.6248 |
| 方法Ⅲ | 35.8910 | 0.3720 | 0.4600 |
| 方法Ⅳ | 0.5570 | 0.2364 | 0.3793 |
表1 模型M1预测的电容剩余寿命误差
Tab.1 Prediction errors for capacitor remaining life from model M1
| 方法 | ETMSE/月2 | ERMSE/月 | EMAE/月 |
|---|---|---|---|
| 方法Ⅰ | 326.2281 | 24.4025 | 4.5532 |
| 方法Ⅱ | 73.3883 | 0.7862 | 0.6248 |
| 方法Ⅲ | 35.8910 | 0.3720 | 0.4600 |
| 方法Ⅳ | 0.5570 | 0.2364 | 0.3793 |
| 方法 | ETMSE/月2 | ERMSE/月 | EMAE/月 |
|---|---|---|---|
| 方法Ⅰ | 379.5832 | 24.6906 | 4.6608 |
| 方法Ⅱ | 79.0720 | 0.9876 | 0.7294 |
| 方法Ⅲ | 38.6987 | 0.4655 | 0.5657 |
| 方法Ⅳ | 0.8733 | 0.2751 | 0.4847 |
表2 模型M2预测的电容剩余寿命误差
Tab.2 Prediction errors for capacitor remaining life from model M2
| 方法 | ETMSE/月2 | ERMSE/月 | EMAE/月 |
|---|---|---|---|
| 方法Ⅰ | 379.5832 | 24.6906 | 4.6608 |
| 方法Ⅱ | 79.0720 | 0.9876 | 0.7294 |
| 方法Ⅲ | 38.6987 | 0.4655 | 0.5657 |
| 方法Ⅳ | 0.8733 | 0.2751 | 0.4847 |
| 方法 | ETMSE/月2 | ERMSE/月 | EMAE/月 |
|---|---|---|---|
| 方法Ⅰ | 484.0462 | 42.5474 | 5.4540 |
| 方法Ⅱ | 263.7029 | 3.0340 | 1.2960 |
| 方法Ⅲ | 156.0063 | 1.8165 | 1.2115 |
| 方法Ⅳ | 144.7175 | 1.5137 | 0.9737 |
表3 模型M3预测的电容剩余寿命误差
Tab.3 Prediction errors for capacitor remaining life from model M3
| 方法 | ETMSE/月2 | ERMSE/月 | EMAE/月 |
|---|---|---|---|
| 方法Ⅰ | 484.0462 | 42.5474 | 5.4540 |
| 方法Ⅱ | 263.7029 | 3.0340 | 1.2960 |
| 方法Ⅲ | 156.0063 | 1.8165 | 1.2115 |
| 方法Ⅳ | 144.7175 | 1.5137 | 0.9737 |
| 方法 | ETMSE/h2 | ERMSE/h | EMAE/h |
|---|---|---|---|
| 方法Ⅰ | 2.9603×103 | 329.3539 | 12.9184 |
| 方法Ⅱ | 2.9055×103 | 306.3711 | 12.1036 |
| 方法Ⅲ | 2.0938×103 | 283.1639 | 11.2551 |
| 方法Ⅳ | 1.5650×103 | 162.3579 | 10.8203 |
表4 模型M1预测的陀螺仪剩余寿命误差
Tab.4 Prediction errors for gyroscope remaining life from model M1
| 方法 | ETMSE/h2 | ERMSE/h | EMAE/h |
|---|---|---|---|
| 方法Ⅰ | 2.9603×103 | 329.3539 | 12.9184 |
| 方法Ⅱ | 2.9055×103 | 306.3711 | 12.1036 |
| 方法Ⅲ | 2.0938×103 | 283.1639 | 11.2551 |
| 方法Ⅳ | 1.5650×103 | 162.3579 | 10.8203 |
| 方法 | ETMSE/h2 | ERMSE/h | EMAE/h |
|---|---|---|---|
| 方法Ⅰ | 1.6222×103 | 167.0967 | 10.2399 |
| 方法Ⅱ | 1.6061×103 | 163.4507 | 10.1967 |
| 方法Ⅲ | 1.5426×103 | 158.1633 | 10.0415 |
| 方法Ⅳ | 1.3300×103 | 142.1238 | 9.9852 |
表5 模型M2预测的陀螺仪剩余寿命误差
Tab.5 Prediction errors for gyroscope remaining life from model M2
| 方法 | ETMSE/h2 | ERMSE/h | EMAE/h |
|---|---|---|---|
| 方法Ⅰ | 1.6222×103 | 167.0967 | 10.2399 |
| 方法Ⅱ | 1.6061×103 | 163.4507 | 10.1967 |
| 方法Ⅲ | 1.5426×103 | 158.1633 | 10.0415 |
| 方法Ⅳ | 1.3300×103 | 142.1238 | 9.9852 |
| 方法 | ETMSE/h2 | ERMSE/h | EMAE/h |
|---|---|---|---|
| 方法Ⅰ | 286.5832 | 37.4123 | 6.0974 |
| 方法Ⅱ | 282.4722 | 37.3894 | 6.0955 |
| 方法Ⅲ | 146.5512 | 17.0075 | 4.0955 |
| 方法Ⅳ | 83.4353 | 11.4387 | 1.0973 |
表6 模型M3预测的陀螺仪剩余寿命误差
Tab.6 Prediction errors for gyroscope remaining life from model M3
| 方法 | ETMSE/h2 | ERMSE/h | EMAE/h |
|---|---|---|---|
| 方法Ⅰ | 286.5832 | 37.4123 | 6.0974 |
| 方法Ⅱ | 282.4722 | 37.3894 | 6.0955 |
| 方法Ⅲ | 146.5512 | 17.0075 | 4.0955 |
| 方法Ⅳ | 83.4353 | 11.4387 | 1.0973 |
| 方法 | ETMSE/Cycle2 | ERMSE/Cycle | EMAE/Cycle |
|---|---|---|---|
| 方法Ⅰ | 2.8915 | 0.0186 | 0.1040 |
| 方法Ⅱ | 1.9668 | 0.0072 | 0.0843 |
| 方法Ⅲ | 1.0147 | 7.8324×10-4 | 0.0280 |
| 方法Ⅳ | 0.5192 | 3.7198×10-4 | 0.0157 |
表7 M1预测的铝合金构件剩余寿命误差
Tab.7 Prediction errors for aluminum alloy components remaining life from model M1
| 方法 | ETMSE/Cycle2 | ERMSE/Cycle | EMAE/Cycle |
|---|---|---|---|
| 方法Ⅰ | 2.8915 | 0.0186 | 0.1040 |
| 方法Ⅱ | 1.9668 | 0.0072 | 0.0843 |
| 方法Ⅲ | 1.0147 | 7.8324×10-4 | 0.0280 |
| 方法Ⅳ | 0.5192 | 3.7198×10-4 | 0.0157 |
| 方法 | ETMSE/Cycle2 | ERMSE/Cycle | EMAE/Cycle |
|---|---|---|---|
| 方法Ⅰ | 0.4010 | 0.0015 | 0.0264 |
| 方法Ⅱ | 0.1926 | 3.7219×10-4 | 0.0157 |
| 方法Ⅲ | 0.1075 | 1.5755×10-4 | 0.0115 |
| 方法Ⅳ | 0.0595 | 6.4055×10-5 | 0.0080 |
表8 M2预测的铝合金构件剩余寿命误差
Tab.8 Prediction errors for aluminum alloy components remaining life from model M2
| 方法 | ETMSE/Cycle2 | ERMSE/Cycle | EMAE/Cycle |
|---|---|---|---|
| 方法Ⅰ | 0.4010 | 0.0015 | 0.0264 |
| 方法Ⅱ | 0.1926 | 3.7219×10-4 | 0.0157 |
| 方法Ⅲ | 0.1075 | 1.5755×10-4 | 0.0115 |
| 方法Ⅳ | 0.0595 | 6.4055×10-5 | 0.0080 |
| 方法 | ETMSE/Cycle2 | ERMSE/Cycle | EMAE/Cycle |
|---|---|---|---|
| 方法Ⅰ | 3.0789 | 0.0557 | 0.2016 |
| 方法Ⅱ | 2.9413 | 0.0545 | 0.1961 |
| 方法Ⅲ | 2.2155 | 0.0463 | 0.1781 |
| 方法Ⅳ | 1.7311 | 0.0320 | 0.1508 |
表9 M3预测的铝合金构件剩余寿命误差
Tab.9 Prediction errors for aluminum alloy components remaining life from model M3
| 方法 | ETMSE/Cycle2 | ERMSE/Cycle | EMAE/Cycle |
|---|---|---|---|
| 方法Ⅰ | 3.0789 | 0.0557 | 0.2016 |
| 方法Ⅱ | 2.9413 | 0.0545 | 0.1961 |
| 方法Ⅲ | 2.2155 | 0.0463 | 0.1781 |
| 方法Ⅳ | 1.7311 | 0.0320 | 0.1508 |
| [1] | 刘小峰, 亢莹莹, 柏林. 轴承自驱式独立退化轨迹构建与剩余寿命灰色预测[J]. 中国机械工程, 2024, 35(9): 1613-1621. |
| LIU Xiaofeng, KANG Yingying, BO Lin. Self-driven Independent Degradation Trajectory Construction and Remaining Life Gray Prediction for Bearings[J]. China Mechanical Engineering, 2024, 35(9): 1613-1621. | |
| [2] | 王宇, 刘秋发, 彭一真. 非均匀监测条件下滚动轴承剩余寿命预测方法[J]. 机械工程学报, 2023, 59(23): 96-104. |
| WANG Yu, LIU Qiufa, PENG Yizhen. A Remaining Useful Life Prediction Approach with Nonuniform Monitoring Conditions for Rolling Bearings[J]. Journal of Mechanical Engineering, 2023, 59(23): 96-104. | |
| [3] | WANG Chen, ZHANG Liming, CHEN Ling, et al. Remaining Useful Life Prediction of Nuclear Reactor Control Rod Drive Mechanism Based on Dynamic Temporal Convolutional Network[J]. Reliability Engineering & System Safety, 2025, 253: 110580. |
| [4] | ZHOU Jianghong, QIN Yi. A Continuous Remaining Useful Life Prediction Method with Multistage Attention Convolutional Neural Network and Knowledge Weight Constraint[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(7): 11847-11860. |
| [5] | MEEKER W Q, HAMADA M. Statistical Tools for the Rapid Development and Evaluation of High-reliability Products[J]. IEEE Transactions on Reliability, 1995, 44(2): 187-198. |
| [6] | LU C, MEEKER W, ESCOBAR L. A Comparison of Degradation and Failure-time Analysis Methods for Estimating a Time-to-failure Distribution[J]. Statistica Sinica, 1996, 6(3): 531-546. |
| [7] | KAHLE W, LEHMANN A. The Wiener Process as a Degradation Model: Modeling and Parameter Estimation[M].Boston:Birkhäuser, 2010. |
| [8] | 厉海涛, 金光, 周经伦, 等. 动量轮维纳过程退化建模与寿命预测[J]. 航空动力学报, 2011, 26(3): 622-627. |
| LI Haitao, JIN Guang, ZHOU Jinglun, et al. Momentum Wheel Wiener Process Degradation Modeling and Life Prediction[J]. Journal of Aerospace Power, 2011, 26(3): 622-627. | |
| [9] | SI Xiaosheng, CHEN Maoyin, WANG Wenbin, et al. Specifying Measurement Errors for Required Lifetime Estimation Performance[J]. European Journal of Operational Research, 2013, 231(3): 631-644. |
| [10] | PENG C Y, TSENG S T. Statistical Lifetime Inference with Skew-Wiener Linear Degradation Models[J]. IEEE Transactions on Reliability, 2013, 62(2): 338-350. |
| [11] | GUAN Qingluan, WEI Xiukun, BAI Wenfei, et al. Two-stage Degradation Modeling for Remaining Useful Life Prediction Based on the Wiener Process with Measurement Errors[J]. Quality and Reliability Engineering International, 2022, 38(7): 3485-3512. |
| [12] | SI Xiaosheng, WANG Wenbin, HU Changhua, et al. Remaining Useful Life Estimation Based on a Nonlinear Diffusion Degradation Process[J]. IEEE Transactions on Reliability, 2012, 61(1): 50-67. |
| [13] | 彭才华, 钱富才, 杜许龙. 新型非线性退化建模与剩余寿命预测[J]. 计算机集成制造系统, 2019, 25(7): 1647-1654. |
| PENG Caihua, QIAN Fucai, DU Xulong. New Nonlinear Degradation Modeling and Residual Life Prediction[J]. Computer Integrated Manufacturing Systems, 2019, 25(7): 1647-1654. | |
| [14] | YU Wennian, TU Wenbing, KIM I Y, et al. A Nonlinear-drift-driven Wiener Process Model for Remaining Useful Life Estimation Considering Three Sources of Variability[J]. Reliability Engineering & System Safety, 2021, 212: 107631. |
| [15] | LIN Jingdong, LIAO Guobo, CHEN Min, et al. Two-phase Degradation Modeling and Remaining Useful Life Prediction Using Nonlinear Wiener Process[J]. Computers & Industrial Engineering, 2021, 160: 107533. |
| [16] | 杨升. 基于贝叶斯更新的数控车床刀具剩余寿命预测研究[D]. 长春: 吉林大学, 2023. |
| YANG Sheng. Research on cutting tool remaining useful life prediction of CNC lathe based on Bayesian updating[D]. Changchun: Jilin University, 2023. | |
| [17] | 任宏宇, 余瑶怡, 杜雄, 等. 基于优化长短期记忆神经网络的IGBT寿命预测模型[J]. 电工技术学报, 2024, 39(4): 1074-1086. |
| REN Hongyu, YU Yaoyi, DU Xiong, et al. IGBT Lifetime Prediction Model Based on Optimized Long Short-term Memory Neural Network[J]. Transactions of China Electrotechnical Society, 2024, 39(4): 1074-1086. | |
| [18] | XU Xiaodong, TANG Shengjin, YU Chuanqiang, et al. Remaining Useful Life Prediction of Lithium-ion Batteries Based on Wiener Process under Time-varying Temperature Condition[J]. Reliability Engineering & System Safety, 2021, 214: 107675. |
| [19] | FAN Mengfei, ZENG Zhiguo, ZIO E, et al. A Sequential Bayesian Approach for Remaining Useful Life Prediction of Dependent Competing Failure Processes[J]. IEEE Transactions on Reliability, 2019, 68(1): 317-329. |
| [20] | YE Zhisheng, WANG Yu, TSUI K L, et al. Degradation Data Analysis Using Wiener Processes with Measurement Errors[J]. IEEE Transactions on Reliability, 2013, 62(4): 772-780. |
| [21] | 司小胜, 胡昌华, 周东华. 带测量误差的非线性退化过程建模与剩余寿命估计[J]. 自动化学报, 2013, 39(5): 530-541. |
| SI Xiaosheng, HU Changhua, ZHOU Donghua. Nonlinear Degradation Process Modeling and Remaining Useful Life Estimation Subject to Measurement Error[J]. Acta Automatica Sinica, 2013, 39(5): 530-541. | |
| [22] | PARK C, PADGETT W J. Stochastic Degradation Models with Several Accelerating Variables[J]. IEEE Transactions on Reliability, 2006, 55(2): 379-390. |
| [23] | 叶海福, 姚永和, 于成龙. 高压脉冲电容器电容量漂移的研究[J]. 高电压技术, 2007, 33(6): 37-41. |
| YE Haifu, YAO Yonghe, YU Chenglong. Capacitance Variability of High Voltage Pulse Capacitors[J]. High Voltage Engineering, 2007, 33(6): 37-41. | |
| [24] | 王泽洲, 陈云翔, 蔡忠义, 等. 考虑随机失效阈值的设备剩余寿命在线预测[J]. 系统工程与电子技术, 2019, 41(5): 1162-1168. |
| WANG Zezhou, CHEN Yunxiang, CAI Zhongyi, et al. Real-time Prediction of Remaining Useful Lifetime for Equipment with Random Failure Threshold[J]. Systems Engineering and Electronics, 2019, 41(5): 1162-1168. |
| [1] | 宋李俊, 刘松林, 辛玉, 马婧华, 谢正邱. 基于轴承退化状态评估和改进图注意力双向门控循环单元网络的轴承剩余寿命预测[J]. 中国机械工程, 2025, 36(07): 1562-1572. |
| [2] | 高新勤, 杨学琦, 郑海洋. 基于多源域迁移学习的带式输送机剩余寿命预测方法[J]. 中国机械工程, 2024, 35(08): 1435-1448. |
| [3] | 齐金平1, 2, 3, 刘晓宇1, 冯洪1, 李鸿伟1, 燕大强4. 高速列车车轮两阶段退化建模及可靠性分析[J]. 中国机械工程, 2024, 35(08): 1390-1396. |
| [4] | 夏然, 苏春. 基于健康因子和混合Bi-LSTM-NAR模型的锂离子电池剩余寿命预测[J]. 中国机械工程, 2024, 35(05): 851-859. |
| [5] | 王巧, 杜雪松, 宋朝省, 朱才朝, 孙健铨, 廖德林. 谐波减速器加速寿命试验方法研究[J]. 中国机械工程, 2022, 33(19): 2317-2324. |
| [6] | 李国龙1;谢天明1;任唯贤1;崔岗卫2. 横梁蠕变松弛对龙门镗铣床运动精度可靠性的影响建模[J]. 中国机械工程, 2020, 31(08): 944-951. |
| [7] | 丁华, 杨亮亮, 杨兆建, 王义亮, . [数字孪生驱动的智能制造]数字孪生与深度学习融合驱动的采煤机健康状态预测[J]. 中国机械工程, 2020, 31(07): 815-823. |
| [8] | 曹惠玲, 崔科璐, 梁佳旺. [数据驱动的智能服务]基于多参数融合相似的民航发动机寿命预测[J]. 中国机械工程, 2020, 31(07): 781-787. |
| [9] | 张继冬;邹益胜;邓佳林;张笑璐. 基于全卷积层神经网络的轴承剩余寿命预测[J]. 中国机械工程, 2019, 30(18): 2231-2235. |
| [10] | 何群, 李磊, 江国乾, 谢平. 基于PCA和多变量极限学习机的轴承剩余寿命预测[J]. 中国机械工程, 2014, 25(7): 984-989. |
| [11] | 刘美芳, 尹纪庭, 余建波. 基于SOA的工程机械远程智能预诊维护系统研究[J]. 中国机械工程, 2012, 23(19): 2320-2326. |
| [12] | 赵又群. 汽车动力学中若干关键状态和参数估计研究的现状与发展 [J]. 中国机械工程, 2010, 21(10): 1250-1253. |
| [13] | 林棻;赵又群;. 基于双重扩展自适应卡尔曼滤波的汽车状态和参数估计[J]. J4, 2009, 20(06): 0-635. |
| [14] | 王胜春;韩捷;李剑峰;李志农. 小波基TVAR建模时频分析及在故障诊断中的应用[J]. J4, 2008, 19(7): 0-761. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||