中国机械工程 ›› 2026, Vol. 37 ›› Issue (1): 147-161.DOI: 10.3969/j.issn.1004-132X.2026.01.016

• 机械基础工程 • 上一篇    

带测量误差的设备非线性退化建模与剩余寿命在线预测

彭才华(), 李建华(), 任丽娜, 贾世琳   

  1. 兰州理工大学机电工程学院, 兰州, 730050
  • 收稿日期:2024-11-09 出版日期:2026-01-25 发布日期:2026-02-05
  • 通讯作者: 李建华
  • 作者简介:彭才华,男,1989年生,博士研究生。研究方向为可靠性分析与寿命预测。发表论文4篇。E-mail: pch5616854@163.com
    李建华*(通信作者),男,1975年生,教授、博士研究生导师。研究方向为设备智能运维。发表论文30余篇。E-mail:li_jh@vip.sina.com
  • 基金资助:
    国家重点研发计划(2019YFB1707303);国家重点研发计划(2020YFB17-13603)

Nonlinear Degradation Modeling and Online Prediction of Remaining Life for Equipment with Measurement Errors

PENG Caihua(), LI Jianhua(), REN Lina, JIA Shilin   

  1. School of Mechanical and Electrical Engineering,Lanzhou University of Technology,Lanzhou,730050
  • Received:2024-11-09 Online:2026-01-25 Published:2026-02-05
  • Contact: LI Jianhua

摘要:

现有的剩余寿命在线预测方法通常基于贝叶斯理论更新随机退化模型的漂移参数,但未更新扩散参数,为此,提出一种同时更新漂移与扩散参数的新方法。建立了考虑多种退化模式的随机退化模型,并依据首达时间原理推导出寿命及剩余寿命概率密度函数。先采用极大似然法离线估计模型的初始参数,再结合贝叶斯原理与期望最大化算法在线更新漂移参数与扩散参数。电容退化数据、陀螺仪漂移数据、铝合金构件裂纹增长数据验证了所提方法的有效性。

关键词: 退化建模, 参数估计, 参数更新, 剩余寿命预测

Abstract:

The existing online prediction methods for remaining life typically updated the drift parameters of stochastic degradation models based on Bayesian theory, while did not update the diffusion parameters. So a new method was proposed to simultaneously update both drift parameters and diffusion parameters. A stochastic degradation model was established considering multiple degradation modes, and the probability density functions of lifetime and remaining life were derived based on the first-passage-time principle. The initial parameters of the model were estimated offline by maximum likelihood method. Subsequently, the drift parameters and diffusion parameters were updated online by integrating Bayesian theory and expectation maximization algorithm. The effectiveness of the proposed method was validated by capacitor degradation data, gyroscope drift data, and aluminum alloy components crack growth data.

Key words: degradation modeling, parameter estimation, parameter updating, remaining life prediction

中图分类号: