中国机械工程 ›› 2025, Vol. 36 ›› Issue (9): 2087-2096.DOI: 10.3969/j.issn.1004-132X.2025.09.021
• 增材制造 • 上一篇
收稿日期:
2024-09-24
出版日期:
2025-09-25
发布日期:
2025-10-15
通讯作者:
周金宇
作者简介:
周金宇*(通信作者),男,1973年生,教授。研究方向为机械可靠性、增材制造、现代设计方法。E-mail:yuhangyuan888@sina.com。
基金资助:
Received:
2024-09-24
Online:
2025-09-25
Published:
2025-10-15
Contact:
Jinyu ZHOU
摘要:
为研究金属选区激光熔化(SLM)工艺参数、成形件微结构及疲劳性能之间的关系,建立了“工艺-微结构-性能”三元多尺度数值模型。为了分析不同工艺参数下温度场、速度场和气孔缺陷的演化过程,研究了考虑反冲力等多物理场耦合现象的介观熔池动力学过程。利用熔池温度场数据,基于元胞自动机模型得到代表性体积元(RVE)的微观结构分布,并由此阐述了工艺参数对晶粒尺寸和缺陷特征的影响。利用应力强度因子评价了不同工艺参数下缺陷的危险程度,并预测了相应RVE的宏观疲劳强度。研究结果表明,所建立的多尺度模型有效预测了不同工艺参数下SLM金属构件的疲劳性能,可为SLM工艺参数优化提供参考。
中图分类号:
周金宇, 陈逸飞. 基于多尺度模拟的选区激光熔化金属件疲劳性能预测[J]. 中国机械工程, 2025, 36(9): 2087-2096.
Jinyu ZHOU, Yifei CHEN. Prediction of Fatigue Property of SLM Metal Parts Based on Multi-scale Simulations[J]. China Mechanical Engineering, 2025, 36(9): 2087-2096.
气孔序号 | 气孔投影面积/μm2 | 最大Mises 应力/MPa | |
---|---|---|---|
横向加载 | 纵向加载 | ||
1 | 295 | 684 | |
295 | 678 | ||
2 | 310 | 627 | |
275 | 565 | ||
3 | 415 | 627 | |
405 | 621 |
表1 拉伸加载下气孔缺陷附近的最大Mises应力
Tab.1 Maximum Mises stresses near pore defects under tensile loading
气孔序号 | 气孔投影面积/μm2 | 最大Mises 应力/MPa | |
---|---|---|---|
横向加载 | 纵向加载 | ||
1 | 295 | 684 | |
295 | 678 | ||
2 | 310 | 627 | |
275 | 565 | ||
3 | 415 | 627 | |
405 | 621 |
气孔 序号 | 气孔投影 面积/μm2 | 缺陷至表面 距离/μm | 应力强度 因子/(MPa·m1/2) |
---|---|---|---|
1 | 295(横向加载) | 30 | 103.2 |
295(纵向加载) | 30 | 102.4 | |
2 | 310(横向加载) | 37 | 95.9 |
275(纵向加载) | 34 | 83.8 | |
3 | 415(横向加载) | 40 | 103.1 |
405(纵向加载) | 40 | 101.5 |
表2 气孔缺陷的应力强度因子
Tab.2 Stress intensity factors of pore defects
气孔 序号 | 气孔投影 面积/μm2 | 缺陷至表面 距离/μm | 应力强度 因子/(MPa·m1/2) |
---|---|---|---|
1 | 295(横向加载) | 30 | 103.2 |
295(纵向加载) | 30 | 102.4 | |
2 | 310(横向加载) | 37 | 95.9 |
275(纵向加载) | 34 | 83.8 | |
3 | 415(横向加载) | 40 | 103.1 |
405(纵向加载) | 40 | 101.5 |
[1] | 吴圣川, 胡雅楠, 杨冰, 等. 增材制造材料缺陷表征及结构完整性评定方法研究综述[J]. 机械工程学报, 2021, 57(22):3-34. |
WU Shengchuan, HU Yanan, YANG Bing, et al. Review on Defect Characterization and Structural Integrity Assessment Method of Additively Manufactured Materials[J]. Journal of Mechanical Engineering, 2021, 57(22):3-34. | |
[2] | 宋波, 张金良, 章媛洁, 等. 金属激光增材制造材料设计研究进展[J]. 金属学报, 2023, 59(1):1-15. |
SONG Bo, ZHANG Jinliang, ZHANG Yuanjie, et al. Research Progress of Materials Design for Metal Laser Additive Manufacturing[J]. Acta Metallurgica Sinica, 2023, 59(1):1-15. | |
[3] | GONG Haijun, RAFI K, GU Hengfeng, et al. Influence of Defects on Mechanical Properties of Ti–6Al–4V Components Produced by Selective Laser Melting and Electron Beam Melting[J]. Materials & Design, 2015, 86:545-554. |
[4] | HU Y N, WU S C, WU Z K, et al. A New Approach to Correlate the Defect Population with the Fatigue Life of Selective Laser Melted Ti-6Al-4V Alloy[J]. International Journal of Fatigue, 2020, 136:105584. |
[5] | 张涛. 基于元胞自动机的BGA锡铅焊球凝固过程模拟研究[D]. 哈尔滨:哈尔滨理工大学, 2020. |
ZHANG Tao. Simulation Study of Solidification Process of BGA Tin-lead Solder Ball Based on Cellular Automaton[D]. Harbin:Harbin University of Science and Technology, 2020. | |
[6] | 王岩, 刘雨萌, 刘江伟, 等. 金属增材制造数值模拟研究进展[J]. 粉末冶金技术, 2022, 40(2):179-192. |
WANG Yan, LIU Yumeng, LIU Jiangwei, et al. Research Progress on Numerical Simulation of Metal Additive-manufacturing Process[J]. Powder Metallurgy Technology, 2022, 40(2):179-192. | |
[7] | 陶攀, 李怀学, 许庆彦, 等. 激光选区熔化工艺过程数值模拟的国内外研究现状[J]. 铸造, 2017, 66(7):695-701. |
TAO Pan, LI Huaixue, XU Qingyan, et al. Research Status of Numerical Simulation of Selective Laser Melting Process at Home and Abroad[J]. Foundry, 2017, 66(7):695-701. | |
[8] | 周辉. 镍基焊缝中高温失塑裂纹产生机制的晶体塑性研究[D]. 合肥:中国科学技术大学, 2019. |
ZHOU Hui. Crystal Plasticity Analysis of the Mechanism of Ductility Dip Cracking in Ni-based Weld Metal[D]. Hefei:University of Science and Technology of China, 2019. | |
[9] | HERZOG D, SEYDA V, WYCISK E, et al. Additive Manufacturing of Metals[J]. Acta Materialia, 2016, 117:371-392. |
[10] | 张云舒, 邵丹丹, 丁东红, 等. 层间强制冷却对电弧熔丝增材制造钛合金温度场和应力场的影响[J]. 电焊机, 2023, 53(2):111-116. |
ZHANG Yunshu, SHAO Dandan, DING Donghong, et al. Effect of Active Interpass Cooling on Temperature and Thermal Stress Evolution of Wire Arc Additively Manufactured Ti6Al4V Alloy[J]. Electric Welding Machine, 2023, 53(2):111-116. | |
[11] | PRIBE J D, RICHTER B, LESER P E, et al. A Process-structure-property Simulation Framework for Quantifying Uncertainty in Additive Manufacturing:Application to Fatigue in Ti-6Al-4V[J]. Integrating Materials and Manufacturing Innovation, 2023, 12(3):231-250. |
[12] | KÖRNER C, MARKL M, KOEPF J A. Modeling and Simulation of Microstructure Evolution for Additive Manufacturing of Metals:a Critical Review[J]. Metallurgical and Materials Transactions A, 2020, 51(10):4970-4983. |
[13] | GETLING A V. Rayleigh-Bénard Convection:Structures and Dynamics[M]. Singapore:World Scientific, 1998. |
[14] | KING W E, ANDERSON A T, FERENCZ R M, et al. Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges[J]. Applied Physics Reviews, 2015, 2(4):041304. |
[15] | 申梦清, 苗秉希, 牛晓峰. 316L不锈钢的激光选区熔化多道成形数值模拟研究[J]. 特种铸造及有色合金, 2022, 42(7):894-897. |
SHEN Mengqing, MIAO Bingxi, NIU Xiaofeng. Numerical Simulation of Multi-pass Laser Selective Melting Forming of 316L Stainless Steel[J]. Special Casting & Nonferrous Alloys, 2022, 42(7):894-897. | |
[16] | THÉVOZ P, DESBIOLLES J L, RAPPAZ M. Modeling of Equiaxed Microstructure Formation in Casting[J]. Metallurgical Transactions A, 1989, 20(2):311-322. |
[17] | 许林, 郭洪民, 杨湘杰. 元胞自动机法模拟铝合金三维枝晶生长[J]. 铸造, 2005, 54(6):575-578. |
XU Lin, GUO Hongmin, YANG Xiangjie. Simulating the Three-dimensional Dendritic Growth of Al Alloy Using the Cellular Automata Method[J]. Foundry, 2005, 54(6):575-578. | |
[18] | 支颖, 王振范, 刘相华. 元胞自动机在金属材料研究中的应用[M]. 北京:科学出版社, 2020. |
ZHI Ying, WANG Zhenfan, LIU Xianghua. Application of Cellular Automata in Research on Metal Materials[M]. Beijing:Science Press, 2020. | |
[19] | KURZ W, GIOVANOLA B, TRIVEDI R. Theory of Microstructural Development during Rapid Solidification[J]. Acta Metallurgica, 1986, 34(5):823-830. |
[20] | HU Y N, WU S C, WITHERS P J, et al. The Effect of Manufacturing Defects on the Fatigue Life of Selective Laser Melted Ti-6Al-4V Structures[J]. Materials & Design, 2020, 192:108708. |
[21] | OLIVEIRA J P, SANTOS T G, MIRANDA R M. Revisiting Fundamental Welding Concepts to Improve Additive Manufacturing:from Theory to Practice[J]. Progress in Materials Science, 2020, 107:100590. |
[22] | SERRANO-MUNOZ I, BUFFIERE J Y, MOKSO R, et al. Location, Location & Size:Defects Close to Surfaces Dominate Fatigue Crack Initiation[J]. Scientific Reports, 2017, 7:45239. |
[23] | DEZECOT S, MAUREL V, BUFFIERE J Y, et al. 3D Characterization and Modeling of Low Cycle Fatigue Damage Mechanisms at High Temperature in a Cast Aluminum Alloy[J]. Acta Materialia, 2017, 123:24-34. |
[24] | WALKER K F, LIU Q, BRANDT M. Evaluation of Fatigue Crack Propagation Behaviour in Ti-6Al-4V Manufactured by Selective Laser Melting[J]. International Journal of Fatigue, 2017, 104:302-308. |
[25] | LE V D, PESSARD E, MOREL F, et al. Fatigue Behaviour of Additively Manufactured Ti-6Al-4V Alloy:the Role of Defects on Scatter and Statistical Size Effect[J]. International Journal of Fatigue, 2020, 140:105811. |
[26] | MURAKAMI Y. Metal Fatigue:Effects of Small Defects and Nonmetallic Inclusions[M]. 2nd ed. Amsterdam:Elsevier, 2019. |
[27] | MURAKAMI Y, BERETTA S. Small Defects and Inhomogeneities in Fatigue Strength:Experiments, Models and Statistical Implications[J]. Extremes, 1999, 2(2):123-147. |
[28] | WU S C, SONG Z, KANG G Z, et al. The Kitagawa-Takahashi Fatigue Diagram to Hybrid Welded AA7050 Joints via Synchrotron X-ray Tomography[J]. International Journal of Fatigue, 2019, 125:210-221. |
[29] | KHAIRALLAH S A, ANDERSON A T, RUBENCHIK A, et al. Laser Powder-bed Fusion Additive Manufacturing:Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones[J]. Acta Materialia, 2016, 108:36-45. |
[30] | Du PLESSIS A. Effects of Process Parameters on Porosity in Laser Powder Bed Fusion Revealed by X-ray Tomography[J]. Additive Manufacturing, 2019, 30:100871. |
[31] | ANTONYSAMY A A, MEYER J, PRANGNELL P B. Effect of Build Geometry on the Β-grain Structure and Texture in Additive Manufacture of Ti6Al4V by Selective Electron Beam Melting[J]. Materials Characterization, 2013, 84:153-168. |
[32] | 廉艳平, 王潘丁, 高杰, 等. 金属增材制造若干关键力学问题研究进展[J]. 力学进展, 2021, 51(3):648-701. |
LIAN Yanping, WANG Panding, GAO Jie, et al. Fundamental Mechanics Problems in Metal Additive Manufacturing:a State-of-art Review[J]. Advances in Mechanics, 2021, 51(3):648-701. |
[1] | 姜世杰1, 2, 蔡尚港1, 英洪玮1, 陈佳琦1. 17-4PH不锈钢挤出成形制品的疲劳性能[J]. 中国机械工程, 2025, 36(07): 1582-1591. |
[2] | 李新宇1, 2, 3, 周永铧1, 2, 3. 铝锰钪锆选区激光熔化成形过程介观尺度数值模拟[J]. 中国机械工程, 2025, 36(03): 584-592,603. |
[3] | 雷付煜1, 徐小旭2, 赵亚明2, 罗军1, 马超1, 徐从昌1, 李落星13. 加载角度对6082铝合金自冲铆接接头疲劳性能及失效模式的影响[J]. 中国机械工程, 2025, 36(01): 141-151. |
[4] | 靳淇超1, 2, 包虎子1, 李良万3, 汪文虎3, 张锦淇1, 叶子银1, 郭磊1. DD5缓进磨削表面粗糙度和硬化率对疲劳性能影响研究[J]. 中国机械工程, 2024, 35(08): 1472-1479. |
[5] | 胡平山, 丁浩亮, 冯漾漾, 严波. 基于线段拓扑关系的轮廓偏置算法[J]. 中国机械工程, 2023, 34(20): 2489-2495. |
[6] | 曾寿金, , 李传生, 刘广, 许明三, 李涤尘. 选区激光熔化梯度多孔支架力学性能和能量吸收研究[J]. 中国机械工程, 2022, 33(19): 2364-2371. |
[7] | 郭一, 田干, 刘德俊, 张有宏, 常新龙. 酸性环境中的铝锂合金腐蚀行为及其元胞自动机模拟[J]. 中国机械工程, 2022, 33(08): 1001-1007. |
[8] | 曾寿金, 吴启锐, 韦铁平, 叶建华, 徐一丹. 选区激光熔化医用316L多孔结构的多目标工艺优化[J]. 中国机械工程, 2022, 33(06): 718-728. |
[9] | 姜云禄, 杨亮, 韩晓辉, 徐野, 陈怀宁, 蔡桂喜. 运行条件对不锈钢点焊疲劳性能影响及开裂分析[J]. 中国机械工程, 2021, 32(14): 1726-1731. |
[10] | 黄仁凯;戴宁;程筱胜. 基于选区激光熔化温度场数值模拟的支撑结构优化[J]. 中国机械工程, 2020, 31(19): 2346-2354. |
[11] | 王冠1;张骞2;寇琳媛1;刘志文3;李世康3. 基于混合元胞自动机算法的连续体结构非线性拓扑优化[J]. 中国机械工程, 2020, 31(18): 2161-2173. |
[12] | 唐凯1;周留成2;何卫峰2;王文健1;郭俊1;刘启跃1. 激光冲击强化对LZ50车轴钢疲劳性能影响试验研究[J]. 中国机械工程, 2020, 31(03): 267-273. |
[13] | 黄潇1,2;曹子文2;常明1;邹世坤2. 激光冲击强化对TC4钛合金单面修饰激光焊接接头疲劳性能的影响[J]. 中国机械工程, 2018, 29(01): 104-109. |
[14] | 陈泽芸;袁卫锋. 弹性力学中无网格和有限元耦合的元胞自动机算法[J]. 中国机械工程, 2017, 28(17): 2131-2135. |
[15] | 阮渊鹏, 李晓, 崔剑. 考虑不完全保护的复杂系统可靠性评估[J]. 中国机械工程, 2015, 26(22): 3001-3007. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||