中国机械工程 ›› 2025, Vol. 36 ›› Issue (9): 2087-2096.DOI: 10.3969/j.issn.1004-132X.2025.09.021

• 增材制造 • 上一篇    

基于多尺度模拟的选区激光熔化金属件疲劳性能预测

周金宇1(), 陈逸飞2,3   

  1. 1.金陵科技学院机电工程学院, 南京, 211199
    2.江苏理工学院机械工程学院, 常州, 213000
    3.江苏沙钢集团有限公司, 苏州, 215625
  • 收稿日期:2024-09-24 出版日期:2025-09-25 发布日期:2025-10-15
  • 通讯作者: 周金宇
  • 作者简介:周金宇*(通信作者),男,1973年生,教授。研究方向为机械可靠性、增材制造、现代设计方法。E-mail:yuhangyuan888@sina.com
  • 基金资助:
    国家自然科学基金(52075232);江苏省自然科学基金

Prediction of Fatigue Property of SLM Metal Parts Based on Multi-scale Simulations

Jinyu ZHOU1(), Yifei CHEN2,3   

  1. 1.School of Mechanical and Electrical Engineering,Jinling Institute of Technology,Nanjing,211199
    2.School of Mechanical Engineering,Jiangsu University of Technology,Changzhou,Jiangsu,213000
    3.Jiangsu Shagang Group Co. ,Ltd. ,Suzhou,Jiangsu,215625
  • Received:2024-09-24 Online:2025-09-25 Published:2025-10-15
  • Contact: Jinyu ZHOU

摘要:

为研究金属选区激光熔化(SLM)工艺参数、成形件微结构及疲劳性能之间的关系,建立了“工艺-微结构-性能”三元多尺度数值模型。为了分析不同工艺参数下温度场、速度场和气孔缺陷的演化过程,研究了考虑反冲力等多物理场耦合现象的介观熔池动力学过程。利用熔池温度场数据,基于元胞自动机模型得到代表性体积元(RVE)的微观结构分布,并由此阐述了工艺参数对晶粒尺寸和缺陷特征的影响。利用应力强度因子评价了不同工艺参数下缺陷的危险程度,并预测了相应RVE的宏观疲劳强度。研究结果表明,所建立的多尺度模型有效预测了不同工艺参数下SLM金属构件的疲劳性能,可为SLM工艺参数优化提供参考。

关键词: 选区激光熔化, 气孔缺陷, 熔池动力学, 元胞自动机, 疲劳性能

Abstract:

A multi-scale ternary numerical model of “process-microstructure-properties” was proposed to investigate the relationships of the processing parameters of metal SLM, the microstructure of the formed parts and the fatigue properties. In detail, to analyze the evolution processes of temperature field, velocity field, and pore defects under different processing parameters, the meso dynamics process of the molten pool was studied with consideration of multiple physical field coupling phenomena such as recoil force. Using the temperature field data, the microstructure distribution of the representative volume element(RVE) was obtained based on cellular automaton model, and the effects of processing parameters on grain sizes and defect characteristics were investigated. Finally, the hazard levels of defects were evaluated under different processing parameters by stress intensity factors, and the macro fatigue strength of corresponding RVE was predicted. The results show that the proposed multi-scale model may effectively predict the fatigue properties of SLM metal parts under different processing parameters. This work provides a reference for optimizing SLM processing parameters.

Key words: selective laser melting(SLM), pore defect, molten pool dynamics, cellular automata, fatigue property

中图分类号: