[1]顾冬冬, 张红梅, 陈洪宇, 等. 航空航天高性能金属材料构件激光增材制造[J]. 中国激光, 2020, 47(5):0500002.
GU Dongdong, ZHANG Hongmei, CHEN Hongyu, et al. Laser Additive Manufacturing of High-performance Metallic Aerospace Components[J]. Chinese Journal of Lasers, 2020, 47(5):0500002.
[2]郭幼节, 张亮, 吴国华, 等. 铝锂合金纳米析出相对力学性能各向异性影响的研究进展[J]. 中国有色金属学报, 2023, 33(8):2371-2384.
GUO Youjie, ZHANG Liang, WU Guohua, et al. Research Progress on Effect of Nano-precipitates on Mechanical Property Anisotropy of Al-Li Alloys[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(8):2371-2384.
[3]SCHUSTER M, de LUCA A, WIDMER R, et al. Processability, Microstructure and Precipitation of a Zr-modified 2618 Aluminium Alloy Fabricated by Laser Powder Bed Fusion[J]. Journal of Alloys and Compounds, 2022, 913:165346.
[4]ZHOU Le, HYER H, PARK S, et al. Microstructure and Mechanical Properties of Zr-modified Aluminum Alloy 5083 Manufactured by Laser Powder Bed Fusion[J]. Additive Manufacturing, 2019, 28:485-496.
[5]OPPRECHT M, GARANDET J P, ROUX G, et al. An Understanding of Duplex Microstructures Encountered during High Strength Aluminium Alloy Laser Beam Melting Processing[J]. Acta Materialia, 2021, 215:117024.
[6]ZHOU S Y, SU Y, WANG H, et al. Selective Laser Melting Additive Manufacturing of 7xxx Series Al-Zn-mg-Cu Alloy:Cracking Elimination by Co-incorporation of Si and TiB2[J]. Additive Manufacturing, 2020, 36:101458.
[7]JIA Qingbo, ROMETSCH P, CAO Sheng, et al. Towards a High Strength Aluminium Alloy Development Methodology for Selective Laser Melting[J]. Materials & Design, 2019, 174:107775.
[8]JIA Qingbo, ROMETSCH P, KRNSTEINER P, et al. Selective Laser Melting of a High Strength Al Mn Sc Alloy:Alloy Design and Strengthening Mechanisms[J]. Acta Materialia, 2019, 171:108-118.
[9]BAYOUMY D, SCHLIEPHAKE D, DIETRICH S, et al. Intensive Processing Optimization for Achieving Strong and Ductile Al-Mn-Mg-SC-Zr Alloy Produced by Selective Laser Melting[J]. Materials & Design, 2021, 198:109317.
[10]耿遥祥, 唐浩, 许俊华, 等. 选区激光熔化高强Al-(Mn, Mg)-(Sc, Zr)合金成形性及力学性能[J]. 金属学报, 2022, 58(8):1044-1054.
GENG Yaoxiang, TANG Hao, XU Junhua, et al. Formability and Mechanical Properties of High-strength Al-(Mn, Mg)-(Sc, Zr)Alloy Produced by Selective Laser Melting[J]. Acta Metallurgica Sinica, 2022, 58(8):1044-1054.
[11]KHAIRALLAH S A, ANDERSON A T, RUBENCHIK A M, et al. Laser Powder-bed Fusion Additive Manufacturing Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones[M]∥Additive Manufacturing Handbook. Boca Raton:CRC Press, 2017:613-625.
[12]KING W E, ANDERSON A T, FERENCZ R M, et al. Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges[J]. Applied Physics Reviews, 2015, 2(4):041304.
[13]QIU Chunlei, PANWISAWAS C, WARD M, et al. On the Role of Melt Flow into the Surface Structure and Porosity Development during Selective Laser Melting[J]. Acta Materialia, 2015, 96:72-79.
[14]梁平华, 唐倩, 冯琪翔, 等. 激光选区熔化单道扫描与搭接数值模拟及试验[J]. 机械工程学报, 2020, 56(22):56-67.
LIANG Pinghua, TANG Qian, FENG Qixiang, et al. Numerical Simulation and Experiment of Single Track Scanning and Lapping in Selective Laser Melting[J]. Journal of Mechanical Engineering, 2020, 56(22):56-67.
[15]袁伟豪, 陈辉, 魏青松. 反冲压力作用下激光选区熔化熔池热动力学行为[J]. 机械工程学报, 2020, 56(7):213-219.
YUAN Weihao, CHEN Hui, WEI Qingsong. The Role of Recoil Pressure in Thermodynamic Behaviors of Molten Pool during Selective Laser Melting[J]. Journal of Mechanical Engineering, 2020, 56(7):213-219.
[16]BROWN N J, CHEN Jianfei, OOI J Y. A Bond Model for DEM Simulation of Cementitious Materials and Deformable Structures[J]. Granular Matter, 2014, 16(3):299-311.
[17]杨瑞兴. 不锈钢金属粉末SLM成型过程表面形貌控制及多场耦合仿真[D]. 秦皇岛:燕山大学, 2020.
YANG Ruixing. Surface Morphology Control and Multi-field Coupling Simulation of Stainless Steel Powder SLM Forming Process[D].Qinhuangdao:Yanshan University, 2020.
[18]曲睿智, 黄良沛, 肖冬明. 选择性激光熔化过程中熔池演变与金属飞溅特性数值模拟[J]. 航空学报, 2022, 43(4):398-417.
QU Ruizhi, HUANG Liangpei, XIAO Dongming. Numerical Simulation of Melt Pool Evolution and Metal Spattering Characterization during Selective Laser Melting Processing[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4):398-417.
[19]赵金猛,卢林,王静荣,等.激光选区熔化Ti6Al4V在介观尺度下的热力学行为与缺陷:数值模拟与实验验证[J].材料导报,2021, 35(增刊2):410-416.
ZHAO Jinmeng, LU Lin, WANG Jingrong, et al. Thermodynamic Behavior and Defects of Laser Selective Melting Ti6Al4V at Mesoscopic Scale:Numerical Simulation and Experimental Verification[J].Materials Reports, 2021, 35(S2):410-416.
[20]WU Dongsheng, HUA Xueming, YE Dingjian, et al. Understanding of Humping Formation and Suppression Mechanisms Using the Numerical Simulation[J]. International Journal of Heat and Mass Transfer, 2017, 104:634-643.
[21]JAVIDRAD H R, SALEMI S. Effect of the Volume Energy Density and Heat Treatment on the Defect, Microstructure, and Hardness of L-PBF Inconel 625[J]. Metallurgical and Materials Transactions A, 2020, 51(11):5880-5891.
|