中国机械工程 ›› 2025, Vol. 36 ›› Issue (12): 3040-3046.DOI: 10.3969/j.issn.1004-132X.2025.12.029
• 工程前沿 • 上一篇
收稿日期:2025-02-17
出版日期:2025-12-25
发布日期:2025-12-31
通讯作者:
张济民
作者简介:何昆,男,1999年生,博士研究生。研究方向为列车被动安全。E-mail:kunhe@tongji.edu.cn基金资助:
Kun HE(
), Hechao ZHOU, Jimin ZHANG(
)
Received:2025-02-17
Online:2025-12-25
Published:2025-12-31
Contact:
Jimin ZHANG
摘要:
现有的列车防爬吸能结构吸能量较低且变形模式难以预测,在复杂工况下极易发生弯曲,造成吸能量的大幅下降并伴随爬车和脱轨的风险。基于改进的拓扑优化方法提出了一种将负泊松比超材料应用于列车吸能器填充结构上的方法。首先采用改进的具有惩罚因子的实体各向同性材料设计了一种负泊松比超材料,通过激光选区熔融工艺制备了样件,并验证了样件稳定的负泊松比变形模式和优良的能量吸收特性。随后通过拉伸、周期排列形成了吸能器填充结构,在对心和40 mm偏心工况下,所提出的负泊松比结构的比吸能与传统的蜂窝结构相比高出了17.9%,且在偏心工况下,比吸能劣化率明显低于传统结构。
中图分类号:
何昆, 周和超, 张济民. 列车防爬吸能器负泊松比超材料填充结构设计[J]. 中国机械工程, 2025, 36(12): 3040-3046.
Kun HE, Hechao ZHOU, Jimin ZHANG. Design of Negative Poisson's Ratio Metamaterial Filling Structures for Train Anti-climb Energy Absorbers[J]. China Mechanical Engineering, 2025, 36(12): 3040-3046.
| 序号 | 迭代过程 | |||
|---|---|---|---|---|
| 1 | ![]() | ![]() | ![]() | ![]() |
| 2 | ![]() | ![]() | ![]() | ![]() |
| 3 | ![]() | ![]() | ![]() | ![]() |
| 4 | ![]() | ![]() | ![]() | ![]() |
表1 拓扑优化迭代过程
Tab.1 Topology optimization iterative process
| 序号 | 迭代过程 | |||
|---|---|---|---|---|
| 1 | ![]() | ![]() | ![]() | ![]() |
| 2 | ![]() | ![]() | ![]() | ![]() |
| 3 | ![]() | ![]() | ![]() | ![]() |
| 4 | ![]() | ![]() | ![]() | ![]() |
| 结构 | t=0 | t=0.004 s | t=0.008 s | t=0.01 s |
|---|---|---|---|---|
| 1 | ![]() | ![]() | ![]() | ![]() |
| 2 | ![]() | ![]() | ![]() | ![]() |
| 3 | ![]() | ![]() | ![]() | ![]() |
| 4 | ![]() | ![]() | ![]() | ![]() |
表2 4种负泊松比结构变形模式
Tab.2 Four negative Poisson's ratio structural deformation modes
| 结构 | t=0 | t=0.004 s | t=0.008 s | t=0.01 s |
|---|---|---|---|---|
| 1 | ![]() | ![]() | ![]() | ![]() |
| 2 | ![]() | ![]() | ![]() | ![]() |
| 3 | ![]() | ![]() | ![]() | ![]() |
| 4 | ![]() | ![]() | ![]() | ![]() |
| 结构 | 质量/g | 吸能量/kJ | 比吸能/(J·g | 初始峰值 碰撞力/kN |
|---|---|---|---|---|
| 1 | 256 | 2.97 | 11.59 | 10.5 |
| 2 | 272 | 4.94 | 18.17 | 14.5 |
| 3 | 236 | 3.38 | 14.32 | 16.4 |
| 4 | 326 | 5.57 | 17.08 | 20.2 |
表3 负泊松比结构吸能参数
Tab.3 Energy absorption parameters of negative Poisson's ratio structures
| 结构 | 质量/g | 吸能量/kJ | 比吸能/(J·g | 初始峰值 碰撞力/kN |
|---|---|---|---|---|
| 1 | 256 | 2.97 | 11.59 | 10.5 |
| 2 | 272 | 4.94 | 18.17 | 14.5 |
| 3 | 236 | 3.38 | 14.32 | 16.4 |
| 4 | 326 | 5.57 | 17.08 | 20.2 |
| 结构 | 工况 | 吸能量/kJ | 比吸能/(J·g | 比吸能劣化率/% |
|---|---|---|---|---|
| 所提结构 | 对心 | 1157.9 | 30.1 | 2.3 |
| 偏心 | 1127.2 | 29.4 | ||
| 蜂窝结构 | 对心 | 718.1 | 26.2 | 7.6 |
| 偏心 | 662.9 | 24.2 |
表4 两种吸能器在不同工况下的碰撞响应参数
Tab.4 Crash response parameters of two types of energy absorbers under different operating conditions
| 结构 | 工况 | 吸能量/kJ | 比吸能/(J·g | 比吸能劣化率/% |
|---|---|---|---|---|
| 所提结构 | 对心 | 1157.9 | 30.1 | 2.3 |
| 偏心 | 1127.2 | 29.4 | ||
| 蜂窝结构 | 对心 | 718.1 | 26.2 | 7.6 |
| 偏心 | 662.9 | 24.2 |
| [1] | 邓功勋,许拓,胡正晟,等.高速列车乘员二次碰撞损伤试验研究[J].机械工程学报, 2025,61 (15):314-323. |
| DENG Gongxun, XU Tuo, HU Zhengsheng, et al. Experimental Study on Secondary Collision Damage of High-speed Train Occupants[J]. Journal of Mechanical Engineering, 2025,61 (15):314-323. | |
| [2] | 苏强,王旭东,张杰,等.地铁车辆前端组合式吸能结构的研究与分析[J].机械强度,2024,46(4):877-886. |
| SU Qiang, WANG Xudong, ZHANG Jie, et al. Research and Analysis of Front-end Combined Energy-absorbing Structure of Subway Vehicle[J]. Mechanical Strength,2024,46(4):877-886. | |
| [3] | 李飞,肖毅华.圆柱销-凹槽挤压式吸能结构的吸能特性和数值仿真研究[J].铁道科学与工程学报,2024,21(8):3298-3309. |
| LI Fei, XIAO Yihua. Energy Absorption Characteristics and Numerical Simulation of Cylindrical Pin-notch Extruded Energy Absorbing Structure[J]. Journal of Railway Science and Engineering,2024,21(8):3298-3309. | |
| [4] | PENG Y, DENG W, XU P, et al. Study on the Collision Performance of a Composite Energy-absorbing Structure for Subway Vehicles[J]. Thin-Walled Structures, 2015, 94: 663-672. |
| [5] | WANG J, LI Z, YANG H, et al. Design and Crashworthiness Evaluation of Corrugated Honeycomb with Multi-directional Energy Absorption Capacity[J]. International Journal of Solids and Structures, 2024, 302: 113001. |
| [6] | ZHANG H, LI Y, LIN Z, et al. Excellent Mechanical Properties of a Novel Double-diagonal Reinforced Mechanical Metamaterial with Tunable Poisson's Ratios Inspired by Deep-sea Glass Sponges[J]. Materials & Design, 2025, 250: 113628. |
| [7] | GAO J, XUE H, GAO L, et al. Topology Optimization for Auxetic Metamaterials Based on Isogeometric Analysis[J]. Computer Methods in Applied Mechanics and Engineering,2019,352:211-236. |
| [8] | GAO J, XIAO M, GAO L, et al. Isogeometric Topology Optimization for Computational Design of Re-entrant and Chiral Auxetic Composites [J]. Computer Methods in Applied Mechanics and Engineering,2020,362:112876. |
| [9] | LAKES R. Foam Structures with a Negative Poissons Ratio[J]. Science, 1987, 235(4792): 1038-1040. |
| [10] | REN L, ZHANG X, LI Z, et al. A Novel Negative Poisson's Ratio Structure with High Poisson's Ratio and High Compression Resistance and Its Application in Magnetostrictive Sensors[J]. Composite Structures, 2025, 351: 118599. |
| [11] | GUO F, HU X C, FU T. Dynamic Response Analysis of Three-dimensional U-shaped Negative Poisson's Ratio Periodic Structures[J]. European Journal of Mechanics-A/Solids, 2025, 111: 105576. |
| [12] | XIA L, BREITKOPF P. Design of Materials Using Topology Optimization and Energy-based Homogenization Approach in Matlab[J]. Structural and Multidisciplinary Optimization, 2015, 52(6): 1229-1241. |
| [13] | ANDREASSEN E, CLAUSEN A, SCHEVENELS M, et al. Efficient Topology Optimization in MATLAB Using 88 Lines of Code[J]. Structural and Multidisciplinary Optimization, 2011, 43(1): 1-16. |
| [14] | QIN D, LI M, WANG T, et al. Design and Mechanical Properties of Negative Poisson's Ratio Structure-based Topology Optimization[J]. Applied Sciences, 2023, 13(13): 7728. |
| [15] | 黄昊,王曾,李波,等.基于折衷规划法的航发齿轮传动壳体结构-热柔度协同拓扑优化[J].中国机械工程,2025,36 (7) :1471-1478. |
| HUANG Hao, WANG Zeng, LI Bo,et al. Structural-thermal Flexibility Cooperative Topology Optimization of Aircraft Gear Transmission Housing based on the Compromise Planning Method[J]. China Mechanical Engineering, 2025,36 (7) :1471-1478. | |
| [16] | GUEDES J, KIKUCHI N. Preprocessing and Postprocessing for Materials Based on the Homogenization Method with Adaptive Finite-element Methods[J]. Computer Methods in Applied Mechanics and Engineering, 1990, 83(2): 143-198. |
| [17] | 孟军辉,刘清洋,金泽华.基于复杂约束拓扑优化的负泊松比超材料设计[J].北京理工大学学报,2023,43(8):852-862. |
| MENG Junhui, LIU Qingyang, JIN Zehua. Design of Negative Poisson's Ratio Metamaterials Based on Complex Constrained Topology Optimization[J]. Journal of Beijing Institute of Technology,2023,43(8):852-862. |
| [1] | 莫帅, 黄轩, 刘文斌, 张伟. 连续可调行星齿轮超材料非线性动力学[J]. 中国机械工程, 2025, 36(11): 2509-2516. |
| [2] | 黄昊1, 王曾2, 李波2, 卢泽华1, 刘怀举1. 基于折衷规划法的航发齿轮传动壳体结构热柔度协同拓扑优化[J]. 中国机械工程, 2025, 36(07): 1471-1478. |
| [3] | 苏珂1, 王颖1, 梁腾腾1, 魏义礼2, 张楠楠2. 基于知情构造理论的单材料柔性机构拓扑优化[J]. 中国机械工程, 2025, 36(04): 873-881. |
| [4] | 林家辉, 李壮壮, 李学霖, 李军. 一种路径吞噬拓扑优化新方法[J]. 中国机械工程, 2025, 36(03): 504-514. |
| [5] | 沈佳兴1, 2, 董建秀2, 范中海2, 于英华2. 防冲吸能液压支架点阵负泊松比吸能结构设计及优化[J]. 中国机械工程, 2025, 36(03): 515-524. |
| [6] | 王书亭1, 谢晴天1, 杨奥迪1, 李小兵2, 熊体凡1, 谢贤达2. 等几何拓扑优化非齐次边界条件施加技术研究[J]. 中国机械工程, 2025, 36(03): 525-535. |
| [7] | 刘敏1, 2, 卢飞扬1, 占金青1, 2, 吴剑1, 朱本亮3. 考虑最小尺寸约束的内嵌可移动压电驱动柔顺机构拓扑优化设计[J]. 中国机械工程, 2025, 36(02): 255-264. |
| [8] | 付君健1, 2, 4, 蒙永根1, 吴海华1, 胡欢3, 李响1, 2, 周祥曼1, 2. 离散组装八面体超材料设计与性能调控[J]. 中国机械工程, 2024, 35(12): 2268-2279. |
| [9] | 王浩1, 2, 王江北3, 罗浩东3, 王立文4. 基于改进四叉树和比例边界有限元法的自适应设计域拓扑优化方法[J]. 中国机械工程, 2024, 35(05): 904-915,927. |
| [10] | 杨峰, 罗世杰, 杨江鸿, 王英俊, . 基于GPU加速的等几何拓扑优化高效多重网格求解方法[J]. 中国机械工程, 2024, 35(04): 602-613. |
| [11] | 苏永雷, 张志飞. 车身多性能约束下的一体压铸三角梁轻量化设计[J]. 中国机械工程, 2024, 35(04): 691-699. |
| [12] | 李荣启, 闫涛, 何智成, 米栋, 姜潮, 郑静. 流-热-力耦合的高性能结构拓扑优化设计方法[J]. 中国机械工程, 2024, 35(03): 487-497. |
| [13] | 陈清华, 吕可, 王德俊, 王建刚, 王建业, 冯鹏. 爆炸载荷下实验舱功能梯度防爆结构的性能[J]. 中国机械工程, 2023, 34(21): 2568-2576. |
| [14] | 王超, 成艾国, 张承霖, 于万元, 何智成. 面向刮底安全的电池包防护结构轻量化设计[J]. 中国机械工程, 2023, 34(19): 2343-2352. |
| [15] | 刘英杰, 胡强, 赵新明, 张少明, 黄帅, 王永慧. 汽车发动机连接支架拓扑优化及增材制造研究[J]. 中国机械工程, 2023, 34(18): 2238-2267. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||