中国机械工程 ›› 2025, Vol. 36 ›› Issue (12): 2829-2836.DOI: 10.3969/j.issn.1004-132X.2025.12.003
• 机械基础工程 • 上一篇
袁媛(
), 白一超(
), 周利东, 孟文俊, 王淼, 曲文斌
收稿日期:2024-11-15
出版日期:2025-12-25
发布日期:2025-12-31
通讯作者:
白一超
作者简介:袁媛,女,1982年生,副教授。研究方向为物流装备及其系统设计。E-mail:2007061@tyust.edu.cn基金资助:
Yuan YUAN(
), Yichao BAI(
), Lidong ZHOU, Wenjun MENG, Miao WANG, Wenbin QU
Received:2024-11-15
Online:2025-12-25
Published:2025-12-31
Contact:
Yichao BAI
摘要:
提出一种基于改进YOLOv8算法的输送带损伤检测算法:用Focal Modulation模块替换YOLOv8原有的SPPF模块;针对损伤与背景相似度高的问题,引入DySample轻量动态上采样模块,使采样点集中在目标区域而忽略背景部分,实现损伤的有效识别;在颈部网络中加入高效多尺度注意力模块来获取更多细节信息,进一步提高损伤目标的关注度。引入PIoU v2损失函数,通过计算真实框与预测框之间的重叠面积精准定位损伤,同时考虑长宽比以更好地适应不同形状损伤。实验结果表明,改进后的模型对输送带损伤检测的精确度和平均精确度均值分别达到了90.3%和93.2%,相比于基线模型YOLOv8提高了2.3%和2.5%。改进YOLOv8的检测速度达 83帧/s,可充分满足输送带损伤实时检测的需求。
中图分类号:
袁媛, 白一超, 周利东, 孟文俊, 王淼, 曲文斌. 改进YOLOv8的输送带损伤检测方法[J]. 中国机械工程, 2025, 36(12): 2829-2836.
Yuan YUAN, Yichao BAI, Lidong ZHOU, Wenjun MENG, Miao WANG, Wenbin QU. Conveyor Belt Damages Detection Based on Improved YOLOv8 Algorithm[J]. China Mechanical Engineering, 2025, 36(12): 2829-2836.
| 配置名称 | 版本/ 参数 |
|---|---|
| 深度学习框架 | PyTorch 2.3.1+cu118 |
| 操作系统 | Windows 11 |
| CPU | Intel(R)Core(TM)i7-13650HX CPU@2.60GHz |
| GPU | NVIDIA GeForce GTX 4060Ti |
| CUDA | 12.4 |
| 编译器 | Python3.9.19 |
| 内存 | 24 GB |
表1 模型训练实验环境
Tab.1 Experimental environment for model training
| 配置名称 | 版本/ 参数 |
|---|---|
| 深度学习框架 | PyTorch 2.3.1+cu118 |
| 操作系统 | Windows 11 |
| CPU | Intel(R)Core(TM)i7-13650HX CPU@2.60GHz |
| GPU | NVIDIA GeForce GTX 4060Ti |
| CUDA | 12.4 |
| 编译器 | Python3.9.19 |
| 内存 | 24 GB |
| 模块类型 | 平均精度PA/% | 精 确 度P/% | 平均 精度 均值Pma/% | 计算量/GFLOPS | |||
|---|---|---|---|---|---|---|---|
| a | b | c | d | ||||
| SPPF | 90.6 | 74.0 | 99.1 | 99.3 | 88 | 90.7 | 8.1 |
| SPP | 91.5 | 76.0 | 98.6 | 99.5 | 88.9 | 91.4 | 7.5 |
| Focal Modulation | 86.7 | 85.0 | 98.5 | 99.4 | 89.3 | 92.4 | 8.2 |
| Basicrfb | 88.3 | 82.7 | 98.8 | 99.5 | 91.6 | 92.3 | 7.6 |
| SimSPPF | 84.4 | 75.7 | 98.6 | 99.5 | 87.1 | 89.5 | 7.5 |
表2 SPPF模块优化对比
Tab.2 SPPF module optimization comparison
| 模块类型 | 平均精度PA/% | 精 确 度P/% | 平均 精度 均值Pma/% | 计算量/GFLOPS | |||
|---|---|---|---|---|---|---|---|
| a | b | c | d | ||||
| SPPF | 90.6 | 74.0 | 99.1 | 99.3 | 88 | 90.7 | 8.1 |
| SPP | 91.5 | 76.0 | 98.6 | 99.5 | 88.9 | 91.4 | 7.5 |
| Focal Modulation | 86.7 | 85.0 | 98.5 | 99.4 | 89.3 | 92.4 | 8.2 |
| Basicrfb | 88.3 | 82.7 | 98.8 | 99.5 | 91.6 | 92.3 | 7.6 |
| SimSPPF | 84.4 | 75.7 | 98.6 | 99.5 | 87.1 | 89.5 | 7.5 |
| 模块类型 | 平均精度PA/% | 精 确 度P/% | 平均 精度 均值Pma/% | 计算量/GFLOPS | |||
|---|---|---|---|---|---|---|---|
| a | b | c | d | ||||
| YOLOv8 | 90.6 | 74.0 | 99.1 | 99.3 | 88.0 | 90.7 | 8.1 |
| CBAM | 88.8 | 77.8 | 98.7 | 99.2 | 91.2 | 91.1 | 8.1 |
| COTA | 91.0 | 75.3 | 99.1 | 99.3 | 87.4 | 91.2 | 8.5 |
| Double attention | 85.2 | 82.6 | 97.1 | 99.5 | 87.5 | 91.1 | 8.1 |
| EMA | 88.2 | 81.1 | 98.7 | 99.5 | 86.7 | 91.9 | 8.1 |
表3 注意力机制对比实验结果
Tab.3 Comparison of experimental results of attention mechanism
| 模块类型 | 平均精度PA/% | 精 确 度P/% | 平均 精度 均值Pma/% | 计算量/GFLOPS | |||
|---|---|---|---|---|---|---|---|
| a | b | c | d | ||||
| YOLOv8 | 90.6 | 74.0 | 99.1 | 99.3 | 88.0 | 90.7 | 8.1 |
| CBAM | 88.8 | 77.8 | 98.7 | 99.2 | 91.2 | 91.1 | 8.1 |
| COTA | 91.0 | 75.3 | 99.1 | 99.3 | 87.4 | 91.2 | 8.5 |
| Double attention | 85.2 | 82.6 | 97.1 | 99.5 | 87.5 | 91.1 | 8.1 |
| EMA | 88.2 | 81.1 | 98.7 | 99.5 | 86.7 | 91.9 | 8.1 |
基础 网络 | 精确度P/% | 平均精度 均值Pma/% | 计算量/GFLOPS | ||||
|---|---|---|---|---|---|---|---|
| √ | × | × | × | × | 88.0 | 90.7 | 8.1 |
| √ | √ | × | × | × | 86.7 | 91.9 | 8.1 |
| √ | √ | √ | × | × | 88.6 | 92.0 | 8.1 |
| √ | √ | √ | √ | × | 88.6 | 93.1 | 8.2 |
| √ | √ | √ | √ | √ | 90.3 | 93.2 | 8.2 |
表4 消融实验结果
Table 4 Ablation results
基础 网络 | 精确度P/% | 平均精度 均值Pma/% | 计算量/GFLOPS | ||||
|---|---|---|---|---|---|---|---|
| √ | × | × | × | × | 88.0 | 90.7 | 8.1 |
| √ | √ | × | × | × | 86.7 | 91.9 | 8.1 |
| √ | √ | √ | × | × | 88.6 | 92.0 | 8.1 |
| √ | √ | √ | √ | × | 88.6 | 93.1 | 8.2 |
| √ | √ | √ | √ | √ | 90.3 | 93.2 | 8.2 |
| 算法 | 平均精度PA/% | 精 确 度 P/% | 平均 精度 均值 Pma/% | 计算量/ GFLOPS | |||
|---|---|---|---|---|---|---|---|
| a | b | c | d | ||||
| YOLOV3-tiny | 71.1 | 78.7 | 92.3 | 99.3 | 81.8 | 85.3 | 18.9 |
| YOLOV5 | 86.3 | 79.3 | 98.2 | 99.3 | 88.3 | 90.8 | 7.1 |
| YOLOV6 | 78.6 | 82.6 | 98.6 | 99.5 | 85.2 | 89.8 | 11.8 |
| YOLOV8 | 90.6 | 74 | 99.1 | 99.3 | 88 | 90.7 | 8.1 |
| YOLOV8s | 89.6 | 79.9 | 97.2 | 99.5 | 90.6 | 91.5 | 28.4 |
| YOLOV9t | 83.9 | 83.3 | 99.5 | 99.5 | 86.2 | 91.6 | 7.6 |
| YOLOV9s | 92.5 | 78.2 | 99.5 | 99.5 | 91.7 | 92.4 | 26.7 |
| YOLOV10n | 87.2 | 77.2 | 97.5 | 98.1 | 87 | 90.0 | 8.2 |
| FDEP-YOLOv8 | 93.6 | 80.4 | 99.4 | 99.4 | 90.3 | 93.2 | 8.2 |
表5 主流算法对比结果
Table 5 Comparison results of mainstream algorithms
| 算法 | 平均精度PA/% | 精 确 度 P/% | 平均 精度 均值 Pma/% | 计算量/ GFLOPS | |||
|---|---|---|---|---|---|---|---|
| a | b | c | d | ||||
| YOLOV3-tiny | 71.1 | 78.7 | 92.3 | 99.3 | 81.8 | 85.3 | 18.9 |
| YOLOV5 | 86.3 | 79.3 | 98.2 | 99.3 | 88.3 | 90.8 | 7.1 |
| YOLOV6 | 78.6 | 82.6 | 98.6 | 99.5 | 85.2 | 89.8 | 11.8 |
| YOLOV8 | 90.6 | 74 | 99.1 | 99.3 | 88 | 90.7 | 8.1 |
| YOLOV8s | 89.6 | 79.9 | 97.2 | 99.5 | 90.6 | 91.5 | 28.4 |
| YOLOV9t | 83.9 | 83.3 | 99.5 | 99.5 | 86.2 | 91.6 | 7.6 |
| YOLOV9s | 92.5 | 78.2 | 99.5 | 99.5 | 91.7 | 92.4 | 26.7 |
| YOLOV10n | 87.2 | 77.2 | 97.5 | 98.1 | 87 | 90.0 | 8.2 |
| FDEP-YOLOv8 | 93.6 | 80.4 | 99.4 | 99.4 | 90.3 | 93.2 | 8.2 |
| [1] | 张梦超,周满山,张媛,等.基于深度学习的矿用输送带损伤检测方法[J].工矿自动化,2021,47(6):51-56. |
| ZHANG Mengchao, ZHOU Manshan, ZHANG Yuan,et al.Damage Detection Method for Mine Conveyor Belt Based on Deep Learning[J].Journal of Mine Automation,2021,47(6):51-56. | |
| [2] | 胡璟皓,高妍,张红娟,等.基于深度学习的带式输送机非煤异物识别方法[J].工矿自动化,2021,47(6):57-62. |
| HU Jinghao, GAO Yan, ZHANG Hongjuan,et al.Research on the Identification Method of Non-coal Foreign Object of Belt Conveyor Based on Deep Learning[J].Journal of Mine Automation,2021,47(6):57-62. | |
| [3] | ALVIARI L P, ANGGAMAWARTI M F, SANJIWANI Y, et al. Classification of Impact Damage on a Rubber-textile Conveyor Belt: a Review[J]. International Journal of Mechanical Engineering Technologies and Applications, 2020, 1(1): 21-27. |
| [4] | GUO X, LIU X, ZHOU H, et al. Belt Tear Detection for Coal Mining Conveyors[J]. Micromachines, 2022, 13(3): 449. |
| [5] | KOZLOWSKI T, WODECKI J, ZIMROZ R, et al. A Diagnostics of Conveyor Belt Splices[J]. Applied Sciences, 2020, 10(18): 6259. |
| [6] | 熊念强,文锋,李清,等.带式输送机胶带撕裂检测技术综述[J].煤炭工程,2022,54(7):79-85. |
| XIONG Nianqiang, WEN Feng, LI Qing,et al.Review on Detection Technology of Conveyor Belt Rip[J]. Coal Engineering,2022,54(7):79-85. | |
| [7] | 王以娜.基于视觉检测的皮带纵向撕裂检测关键技术研究[D]. 鞍山:辽宁科技大学,2020. |
| WANG Yina,Research on Key Technology of Belt Longitudinal Tear Detection Based on Visual Inspection[D].Anshan:University of Science and Technology Liaoning,2020. | |
| [8] | 陈希阳,李佳楠,张翼,等.基于神经网络的难选夹层磷矿石预分选理论研究[J].有色金属(选矿部分),2023 (6):125-131. |
| CHEN Xiyang, LI Jianan, ZHANG Yi,et al.Theoretical Study on Pre-separation of Phosphate Ore with Refractory Interlayer Based on Neural Network[J].Nonferrous Metals(Mineral Processing Section),2023 (6):125-131. | |
| [9] | 樊红卫,刘金鹏,曹现刚,等.低照度尘雾下煤、异物及输送带早期损伤多尺度目标智能检测方法[J].煤炭学报, 2024,49 ():1259-1270. |
| FAN Hongwei, LIU Jinpeng, CAO Xiangang,et al.Multi-scale Target Intelligent Detection Method for Coal,Foreign Object and Early Damage of Conveyor Belt Surface under Low Illumination and Dust Fog[J].Journal of China Coal Society, 2024,49 (S2):1259-1270. | |
| [10] | WANG G, YANG Z, SUN H, et al. AC-SNGAN: Multi-class Data Augmentation for Damage Detection of Conveyor Belt Surface Using Improved ACGAN[J]. Measurement, 2024, 224: 113814. |
| [11] | GUO X, LIU X, GARDONI P, et al. Machine Vision Based Damage Detection for Conveyor Belt Safety Using Fusion Knowledge Distillation[J]. Alexandria Engineering Journal, 2023, 71: 161-172. |
| [12] | ZHANG M, SHI H, ZHANG Y, et al. Deep Learning-based Damage Detection of Mining Conveyor Belt[J]. Measurement, 2021, 175: 109130. |
| [13] | 沈景轩,王贡献,孙晖,等.基于图像自适应增强YOLOv5的输送带纵向撕裂检测[J].仪表技术与传感器,2023(12):69-74. |
| SHEN Jingxuan, WANG Gongxian, SUN Hui, et al.Longitudinal Tear Detection Based on Image-adaptive Enhancement YOLOv5 for Conveyor Belt[J].Instrument Technique and Sensor,2023(12):69-74. | |
| [14] | 于庆,罗明华,向亮,等.基于改进YOLOv5的矿用输送带纵向撕裂检测方法[J].矿业安全与环保,2024,51(4):1-8. |
| YU Qing, LUO Minghua, XINAG Liang,et al.Longitudinal Tear Detection Method of Mine Conveyor Belt Based on Improved YOLOv5[J].Mining Safety & Environmental Protection,2024,51(4):1-8. | |
| [15] | 洪炎,汪磊,苏静明,等.基于改进YOLOv8的煤矿输送带异物检测[J].工矿自动化,2024,50(6):61-69. |
| HONG Yan, WANG Lei, SU Jingming,et al.Foreign Object Detection of Coal Mine Conveyor Belt Based on Improved YOLOv8[J].Journal of Mine Automation,2024,50(6):61-69. | |
| [16] | YANG J, LI C, DAI X, et al. Focal Modulation Networks[J]. Advances in Neural Information Processing Systems, 2022, 35: 4203-4217. |
| [17] | LIU W, LU H, FU H, et al. Learning to Upsample by Learning to Sample[C]∥Proceedings of the IEEE/CVF International Conference on Computer Vision. Paris :2023: 6027-6037. |
| [18] | OUYANG D, HE S, ZHANG G, et al. Efficient Multi-scale Attention Module with Cross-spatial Learning[C]∥ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).Greece: IEEE, 2023: 1-5. |
| [19] | LIU C, WANG K, LI Q, et al. Powerful-IoU: More Straightforward and Faster Bounding Box Regression Loss with a Nonmonotonic Focusing Mechanism[J]. Neural Networks, 2024, 170: 276-284. |
| [20] | 陈腾杰,李永安,张之好,等.基于改进YOLOv8n+DeepSORT的带式输送机异物检测及计数方法[J].工矿自动化,2024,50(8):91-98. |
| CHEN Tengjie, LI Yongan, ZHANG Zhihao, et al. Foreign Object Detection and Counting Method for Belt Conveyor Based on Improved YOLOv8n+DeepSORT[J].Journal of Mine Automation,2024,50(8):91-98. | |
| [21] | SELVARAJU R R, COGSWELL M, DAS A, et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization[J]. International Journal of Computer Vision, 2020, 128: 336-359. |
| [1] | 吴洪臣, 陈晓荣, 李柏杨. 多线程半全局立体匹配工件内部检测方法[J]. 中国机械工程, 2025, 36(11): 2783-2791. |
| [2] | 王俊, 高贵兵. 基于改进YOLOv5s的风电叶片表面缺陷检测方法[J]. 中国机械工程, 2025, 36(09): 2108-2116. |
| [3] | 罗亮1, 2, 郎霄1, 祖国庆2, 张农1, 杨林3, 沈雄伟4. 一种基于改进YOLOv8n的气缸套缺陷检测方法[J]. 中国机械工程, 2025, 36(05): 1054-1064. |
| [4] | 胡新宇, 刘锡阳, 张骏巍, 严爽, 李云翔, 叶旭辉. 基于YOLOv5s的精密视觉检测系统快速调焦方法[J]. 中国机械工程, 2025, 36(04): 864-872. |
| [5] | 朱传军1, 梁泽启1, 付强1, 张超勇2. 基于距离感知的金属缺陷样本标签分配算法[J]. 中国机械工程, 2024, 35(09): 1634-1641. |
| [6] | 那一鸣1, 胡超1, 邱业余2, 卢礼兵2, 宋凯1. 基于机器视觉的汽车车门三维定位引导[J]. 中国机械工程, 2024, 35(09): 1677-1687. |
| [7] | 邹俊逸, 刘畅, 郭文彬, 严运兵, 冉茂平. 面向智能车辆的路面凹凸障碍物识别方法研究[J]. 中国机械工程, 2024, 35(06): 951-961. |
| [8] | 梅杰, 覃嘉锐, 陈定方, 陈昆, . 基于视觉同时定位与地图构建的水下图像增强式视觉三维重建方法[J]. 中国机械工程, 2024, 35(02): 268-279. |
| [9] | 孙家乐, 罗晨, 周怡君, 王伟, 张刚. 复杂视觉测量系统的标定参数优化及精度评估[J]. 中国机械工程, 2023, 34(14): 1741-1748,1755. |
| [10] | 温江涛, 张鹏程, 孙洁娣, 雷鸣. 残差卷积自编码网络无监督迁移轴承故障诊断[J]. 中国机械工程, 2022, 33(14): 1707-1716. |
| [11] | 崔海华, 徐振龙, 杨亚鹏, 孟亚云, 王宝俊. 一种基于深度学习图像超分的环形靶标稳定检测方法[J]. 中国机械工程, 2021, 32(23): 2861-2867. |
| [12] | 易怀安, 赵欣佳, 唐乐, 陈永伦. 基于彩色图像奇异值熵指标的磨削表面粗糙度视觉测量方法[J]. 中国机械工程, 2021, 32(13): 1577-1583. |
| [13] | 张峰峰, 张欣, 陈龙, 孙立宁, 詹蔚. 采用改进遗传算法优化神经网络的双目相机标定[J]. 中国机械工程, 2021, 32(12): 1423-1431. |
| [14] | 郭保苏;庄集超;章钦;吴凤和. 基于多分量卷积神经网络的多晶硅晶片颜色差异检测[J]. 中国机械工程, 2021, 32(03): 297-304. |
| [15] | 田素坤1;戴宁1;袁福来1;孙玉春2;俞青3;程筱胜1. 基于条件生成对抗网络的缺失牙体功能性咬合面形态设计方法[J]. 中国机械工程, 2021, 32(03): 331-340. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||