[1]LUO Qiwu, FANG Xiaoxin, LIU Li, et al. Automated Visual Defect Detection for Flat Steel Surface:a Survey[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(3):626-644.
[2]SONG Guorong, SONG Kechen, YAN Yunhui. EDRNet:Encoder–Decoder Residual Network for Salient Object Detection of Strip Steel Surface Defects[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(12):9709-9719.
[3]HE Yu, SONG Kechen, MENG Qinggang, et al. An End-to-end Steel Surface Defect Detection Approach via Fusing Multiple Hierarchical Features[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4):1493-1504.
[4]冯永毅. 基于人工免疫方法的带钢表面缺陷分割[D]. 成都:电子科技大学, 2007.
FENG Yongyi. Segmentation of Strip Surface Defects Based on Artificial Immune Method[D].Chengdu:University of Electronic Science and Technology of China, 2007.
[5]PSUJ G. Multi-sensor Data Integration Using Deep Learning for Characterization of Defects in Steel Elements[J]. Sensors, 2018, 18(1):292.
[6]WANG Jinjiang, FU Peilun, GAO R X. Machine Vision Intelligence for Product Defect Inspection Based on Deep Learning and Hough Transform[J]. Journal of Manufacturing Systems, 2019, 51:52-60.
[7]李维刚, 叶欣, 赵云涛, 等. 基于改进YOLOv3算法的带钢表面缺陷检测[J]. 电子学报, 2020, 48(7):1284-1292.
LI Weigang, YE Xin, ZHAO Yuntao, et al. Strip Steel Surface Defect Detection Based on Improved YOLOv3 Algorithm[J]. Acta Electronica Sinica, 2020, 48(7):1284-1292.
[8]马晓锋, 夏攀, 刘海生, 等. 全位置焊接熔池的深度学习检测方法[J]. 机械工程学报, 2023, 59(12):272-283.
MA Xiaofeng, XIA Pan, LIU Haisheng, et al. Deep Learning Detection Method of All-position Welding Pool[J]. Journal of Mechanical Enginee-ring, 2023, 59(12):272-283.
[9]ZHANG Yang, LIU Xiaofang, GUO Jun, et al. Surface Defect Detection of Strip-steel Based on an Improved PP-YOLOE-m Detection Network[J]. Electronics, 2022, 11(16):2603.
[10]唐东林, 杨洲, 程衡, 等. 浅层卷积神经网络融合Transformer的金属缺陷图像识别方法[J]. 中国机械工程, 2022, 33(19):2298-2305.
TANG Donglin, YANG Zhou, CHENG Heng, et al. Metal Defect Image Recognition Method Based on Shallow CNN Fusion Transformer[J]. China Mechanical Engineering, 2022, 33(19):2298-2305.
[11]FU Guizhong, SUN Peize, ZHU Wenbin, et al. A Deep-learning-based Approach for Fast and Robust Steel Surface Defects Classification[J]. Optics and Lasers in Engineering, 2019, 121:397-405.
[12]ZHANG Xiaosong, WAN Fang, LIU Chang, et al. FreeAnchor:Learning to Match Anchors for Visual Object Detection[EB/OL]. arXiv, 2019[2023-11-10]. http:∥arxiv.org/abs/1909.02466.
[13]ZHANG Shifeng, CHI Cheng, YAO Yongqiang, et al. Bridging the Gap between Anchor-based and Anchor-free Detection via Adaptive Training Sample Selection[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). IEEE, 2020:9756-9765.
[14]KIM K, LEE H S. Probabilistic Anchor Assignment with IoU Prediction for Object Detection[C]∥European Conference on Computer Vision. Cham:Springer, 2020:355-371.
[15]ZHENG Zhaohui, WANG Ping, LIU Wei, et al. Distance-IOU Loss:Faster and Better Learning for Bounding Box Regression[J]. Proceedings of the AAAI Conference on Artificial Intelligence. New York, 2020:12993-13000.
[16]ZHANG Yifan, REN Weiqiang, ZHANG Zhang, et al. Focal and Efficient IOU Loss for Accurate Bounding Box Regression[J]. Neurocomputing, 2022, 506(C):146-157.
[17]ZHENG Zhaohui, WANG Ping, REN Dongwei, et al. Enhancing Geometric Factors in Model Learning and Inference for Object Detection and Instance Segmentation[J]. IEEE Transactions on Cybernetics, 2022, 52(8):8574-8586.
[18]CORCEIRO A, ALIBABAEI K, ASSUNO E, et al. Methods for Detecting and Classifying Weeds, Diseases and Fruits Using AI to Improve the Sustainability of Agricultural Crops:a Review[J]. Processes, 2023, 11(4):1263.
[19]LIN T Y, GOYAL P, GIRSHICK R, et al. Focal Loss for Dense Object Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(2):318-327.
|