中国机械工程 ›› 2025, Vol. 36 ›› Issue (10): 2463-2471.DOI: 10.3969/j.issn.1004-132X.2025.10.036

• 工程前沿 • 上一篇    

基于时空风险场的智能车辆轨迹规划

孔慧芳(), 王晨顺, 张倩(), 刘田阔   

  1. 合肥工业大学电气与自动化工程学院, 合肥, 230009
  • 收稿日期:2024-08-30 出版日期:2025-10-25 发布日期:2025-11-05
  • 通讯作者: 张倩
  • 作者简介:孔慧芳,女,1964年生,教授、博士研究生导师。研究方向为控制理论与控制工程、新能源汽车运动规划等。E-mail:1989800024@hfut.edu.cn
    张倩*(通信作者),女,1991年生,博士研究生。研究方向为交通安全、新能源汽车路径规划与运动控制。E-mail:d_zhangqian@163.com
  • 基金资助:
    安徽省重点研发计划(JZ2021AKKG0310)

Intelligent Vehicle Trajectory Planning Based on Spatio-temporal Risk Fields

Huifang KONG(), Chenshun WANG, Qian ZHANG(), Tiankuo LIU   

  1. School of Electrical and Automation Engineering,Hefei University of Technology,Hefei,230009
  • Received:2024-08-30 Online:2025-10-25 Published:2025-11-05
  • Contact: Qian ZHANG

摘要:

为描述及规避智能车辆行驶时面临的不同维度风险,提出了一种基于时空风险场的双层轨迹规划方法。将交通要素划分为抽象要素和具象要素,分别建立基于高斯分布函数的抽象要素时空风险场和基于空间向量的具象要素时空风险场,以表征智能车辆在纵向、横向和时间三个维度面临的环境风险。将智能车辆的轨迹规划问题划分为路径和速度双层规划问题,分别考虑纵向-横向维度和纵向-时间维度的风险构建动态规划的代价函数,获取综合代价最低的路径和速度。结合二次规划算法对路径和速度进一步优化得到最终轨迹。仿真结果表明,所提出的方法在不同的驾驶场景下能够有效表征时空风险并规划出满足各项约束条件的行驶轨迹,从而提高道路驾驶的安全性。

关键词: 智能车辆, 时空风险场, 轨迹规划, 动态规划

Abstract:

Aming to describe and avoid different dimensions of risks faced by intelligent vehicles, a two-layer trajectory planning method was proposed based on spatio-temporal risk fields. Traffic elements were divided into abstract elements and concrete elements, the spatial-temporal risk fields of abstract elements based on Gaussian distribution function and concrete elements based on spatial vector were established respectively to represent the environmental risks faced by intelligent vehicles in three dimensions: vertical, horizontal and temporal. Additionally, the trajectory planning problem of intelligent vehicles was divided into path and speed dual planning problem. The longitudinal-lateral dimension risk and longitudinal-temporal dimension risk were accordingly applied to dynamic planning cost function. Then, the path and speed with the comprehensive lowest cost were calculated, and combined with quadratic programming algorithm, the path and velocity were further optimized to obtain the final trajectory. Simulation results demonstrate that the proposed methodology may effectively characterize spatio-temporal driving risks across diverse scenarios while generating constraint-satisfying trajectories, thereby significantly enhance road driving safety.

Key words: intelligent vehicle, spatio-temporal risk field, trajectory planning, dynamic planning

中图分类号: