中国机械工程 ›› 2025, Vol. 36 ›› Issue (10): 2207-2214.DOI: 10.3969/j.issn.1004-132X.2025.10.006
• 国家重点科技项目研究进展专栏 • 上一篇
李文倩1,2,3,4(
), 刘战强1,2,4,5(
), 赵金富1,2,3,4, 王兵1,2,3,4, 蔡玉奎1,2,3,4
收稿日期:2024-06-05
出版日期:2025-10-25
发布日期:2025-11-05
通讯作者:
刘战强
作者简介:李文倩,女,2002年生,硕士研究生。研究方向为长寿命密封表面的设计与加工。E-mail:sduliwenqian@mail.sdu.edu.cn基金资助:
Wenqian LI1,2,3,4(
), Zhanqiang LIU1,2,4,5(
), Jinfu ZHAO1,2,3,4, Bing WANG1,2,3,4, Yukui CAI1,2,3,4
Received:2024-06-05
Online:2025-10-25
Published:2025-11-05
Contact:
Zhanqiang LIU
摘要:
针对GH4169材质的干气密封动环表面开展了纳秒激光加工螺旋槽工艺的试验研究。利用正交试验和单因素法,揭示激光功率、扫描速度、填充间距和重复频率对螺旋槽槽深和槽底粗糙度Ra的影响规律,确定合适的激光加工参数组合。结果表明,对GH4169合金表面螺旋槽深度影响最大的是激光功率,其次为重复频率以及扫描速度,对槽底粗糙度影响最大的是扫描速度,其次为重复频率和填充间距。采用激光功率18 W、扫描速度40 mm/s、填充间距0.005 mm、重复频率50 kHz时,加工后动环表面螺旋槽能够满足槽深7 μm、槽底粗糙度Ra≤0.8 μm的加工需求。
中图分类号:
李文倩, 刘战强, 赵金富, 王兵, 蔡玉奎. 干气密封动环表面的螺旋槽纳秒激光制备[J]. 中国机械工程, 2025, 36(10): 2207-2214.
Wenqian LI, Zhanqiang LIU, Jinfu ZHAO, Bing WANG, Yukui CAI. Nanosecond Laser Machining of Spiral Grooves of Dry Gas Seal Rotational Ring Surfaces[J]. China Mechanical Engineering, 2025, 36(10): 2207-2214.
| 参数 | 值 |
|---|---|
化学成分 (质量分数)/% | Ni:52.03;Cr:18.53;Nb:5.33;Mo:3.09;Ti:0.96;Al:0.58;C:0.03;Co:0.01 |
| 密度 | 8.19 |
| 硬度 | 432HBW |
表1 GH4169试件材料属性
Tab.1 GH4169 specimen material properties
| 参数 | 值 |
|---|---|
化学成分 (质量分数)/% | Ni:52.03;Cr:18.53;Nb:5.33;Mo:3.09;Ti:0.96;Al:0.58;C:0.03;Co:0.01 |
| 密度 | 8.19 |
| 硬度 | 432HBW |
组 号 | 激光 功率 P/W | 扫描速度 v/(mm·s-1) | 重复 频率 f/kHz | 填充 间距 s/mm | 槽深 hg/μm | 槽底 粗糙度 Ra/μm |
|---|---|---|---|---|---|---|
| 1 | 15 | 30 | 50 | 0.005 | 5.720 | 0.915 |
| 2 | 15 | 40 | 60 | 0.01 | 3.500 | 0.795 |
| 3 | 15 | 50 | 70 | 0.013 | 2.430 | 0.911 |
| 4 | 18 | 30 | 60 | 0.013 | 6.334 | 0.791 |
| 5 | 18 | 40 | 70 | 0.005 | 6.419 | 0.796 |
| 6 | 18 | 50 | 50 | 0.01 | 6.426 | 0.912 |
| 7 | 21 | 30 | 70 | 0.01 | 10.454 | 0.740 |
| 8 | 21 | 40 | 50 | 0.013 | 13.684 | 1.029 |
| 9 | 21 | 50 | 60 | 0.005 | 7.413 | 0.928 |
表2 正交试验参数及测量结果
Tab.2 Orthogonal test parameters and measurement results
组 号 | 激光 功率 P/W | 扫描速度 v/(mm·s-1) | 重复 频率 f/kHz | 填充 间距 s/mm | 槽深 hg/μm | 槽底 粗糙度 Ra/μm |
|---|---|---|---|---|---|---|
| 1 | 15 | 30 | 50 | 0.005 | 5.720 | 0.915 |
| 2 | 15 | 40 | 60 | 0.01 | 3.500 | 0.795 |
| 3 | 15 | 50 | 70 | 0.013 | 2.430 | 0.911 |
| 4 | 18 | 30 | 60 | 0.013 | 6.334 | 0.791 |
| 5 | 18 | 40 | 70 | 0.005 | 6.419 | 0.796 |
| 6 | 18 | 50 | 50 | 0.01 | 6.426 | 0.912 |
| 7 | 21 | 30 | 70 | 0.01 | 10.454 | 0.740 |
| 8 | 21 | 40 | 50 | 0.013 | 13.684 | 1.029 |
| 9 | 21 | 50 | 60 | 0.005 | 7.413 | 0.928 |
| 参数 | 激光功率的重要程度 | 扫描速度的 重要程度 | 重复频率的 重要程度 | 填充间距 的 重要程度 |
|---|---|---|---|---|
| 11.650 | 22.508 | 25.830 | 19.552 | |
| 19.179 | 23.603 | 17.247 | 20.380 | |
| 31.551 | 16.269 | 19.303 | 22.448 | |
| 3.880 | 7.503 | 8.610 | 6.517 | |
| 6.393 | 7.868 | 5.749 | 6.793 | |
| 10.517 | 5.423 | 6.434 | 7.483 | |
| R | 6.637 | 2.445 | 2.861 | 0.966 |
表3 槽深的平均值和极差分析
Tab.3 Mean and extreme variance analysis of slot depths
| 参数 | 激光功率的重要程度 | 扫描速度的 重要程度 | 重复频率的 重要程度 | 填充间距 的 重要程度 |
|---|---|---|---|---|
| 11.650 | 22.508 | 25.830 | 19.552 | |
| 19.179 | 23.603 | 17.247 | 20.380 | |
| 31.551 | 16.269 | 19.303 | 22.448 | |
| 3.880 | 7.503 | 8.610 | 6.517 | |
| 6.393 | 7.868 | 5.749 | 6.793 | |
| 10.517 | 5.423 | 6.434 | 7.483 | |
| R | 6.637 | 2.445 | 2.861 | 0.966 |
| 参数 | 激光功率的重要程度 | 扫描速度的重要程度 | 重复频率的重要程度 | 填充间距的重要程度 |
|---|---|---|---|---|
| 2.621 | 2.446 | 2.856 | 2.639 | |
| 2.499 | 2.331 | 2.514 | 2.447 | |
| 2.697 | 2.751 | 2.447 | 2.731 | |
| 0.874 | 0.815 | 0.952 | 0.880 | |
| 0.833 | 0.777 | 0.838 | 0.816 | |
| 0.899 | 0.917 | 0.816 | 0.910 | |
| R | 0.066 | 0.140 | 0.136 | 0.094 |
表4 槽底粗糙度的平均值和极差分析
Tab.4 Mean and extreme variance analysis of roughness of groove bottom
| 参数 | 激光功率的重要程度 | 扫描速度的重要程度 | 重复频率的重要程度 | 填充间距的重要程度 |
|---|---|---|---|---|
| 2.621 | 2.446 | 2.856 | 2.639 | |
| 2.499 | 2.331 | 2.514 | 2.447 | |
| 2.697 | 2.751 | 2.447 | 2.731 | |
| 0.874 | 0.815 | 0.952 | 0.880 | |
| 0.833 | 0.777 | 0.838 | 0.816 | |
| 0.899 | 0.917 | 0.816 | 0.910 | |
| R | 0.066 | 0.140 | 0.136 | 0.094 |
| [1] | 毛文元, 宋鹏云, 邓强国, 等. 螺旋槽底表面粗糙度对干气密封性能的影响 [J]. 润滑与密封, 2017, 42 (1): 27-33. |
| MAO Wenyuan, SONG Pengyun, DENG Qiangguo, et al. Influence of Surface Roughness of Spiral Groove Bottom on Dry Gas Sealing Performance[J]. Lubrication and Sealing, 2017, 42 (1): 27-33. | |
| [2] | MAO Bo, SIDDAIAH A, LIAO Yiliang, et al. Laser Surface Texturing and Related Techniques for Enhancing Tribological Performance of Engineering Materials: a Review[J]. Journal of Manufacturing Processes, 2020, 53: 153-173 . |
| [3] | 王衍, 于雪梅, 卢龙, 等.非接触式机械密封表面开槽技术研究现状 [J]. 液压气动与密封, 2016, 36 (11): 1-6. |
| WANG Yan, YU Xuemei, LU Long, et al. Research Status of Non-contact Mechanical Seal Surface Grooving Technology[J]. Hydraulic Pneumatic and Seal,2016, 36 (11): 1-6. | |
| [4] | MARTÍNEZ S, LAMIKIZ A, UKAR E, et al. Analysis of the Regimes in the Scanner-based Laser Hardening Process[J]. Optics and Lasers in Engineering,2017, 90: 72-80. |
| [5] | ZHAO Wanqin, WANG Lingzhi, YU Zhishui, et al. A Processing Technology of Grooves by Picosecond Ultrashort Pulse Laser in Ni Alloy: Enhancing Efficiency and Quality[J]. Optics and Laser Technology, 2019, 111: 214-221. |
| [6] | DOU J, CUI J, FANG X, et al. Theoretical and Experimental Study on Machining Rectangular Microgroove of Diamond by Femtosecond Laser[J]. Integrated Ferroelectrics, 2020, 208 (1): 104-116. |
| [7] | HU Tianrui, YUAN Songmei, WEI Jiayong, et al. Micro-grooves Machining and Optimizing on SiC/SiC Composites by Femtosecond Laser-based on Response Surface Methodology[J]. Ceramics International, 2024, 50 (1PB): 1665-1682. |
| [8] | DHAKER L K, PANDEY K A. Particle Swarm Optimisation of Hole Quality Characteristics in Laser Trepan Drilling of Inconel 718[J]. Defence Science Journal, 2019, 69(1): 37-45. |
| [9] | NAVEED A, MADIHA R, SALMAN P, et al. Controlling the Material Removal and Roughness of Inconel 718 in Laser Machining[J]. Materials and Manufacturing Processes,2019,34(10):1169-1181. |
| [10] | DENKENA B, GROVE T, KRÖDEL A, et al. Increased Performance in High Speed Turning of Inconel 718 by Laser Structuring of Pcbn Tools[J]. Procedia CIRP, 2018, 77:602-605. |
| [11] | AVADHOOT R, SATISH C. Experimental Investigation on Laser-processed Micro-dimple and Micro-channel Textured Tools during Turning of Inconel 718 Alloy[J]. Journal of Materials Engineering and Performance,2022,31(5):1-16. |
| [12] | 毛文元, 宋鹏云, 邓强国, 等.干气密封螺旋槽的激光加工工艺研究 [J]. 工程科学与技术,2018, 50 (5): 253-262. |
| MAO Wenyuan, SONG Pengyun, DENG Qiangguo, et al. Research on Laser Machining Process of Spiral Groove of Dry Gas Seal[J]. Engineering Science and Technology, 2018, 50 (5): 253-262. | |
| [13] | 毛文元, 刘小磊, 陈硕, 等. 纳秒激光加工机械密封动压槽的槽深计算及实验验证 [J]. 中国激光, 2023, 50 (12): 269-276. |
| MAO Wenyuan, LIU Xiaolei, CHEN Shuo, et al. Calculation and Experimental Validation of Groove Depth for Nanosecond Laser Machining of Dynamic Pressure Grooves in Mechanical Seals[J]. China Laser, 2023, 50 (12): 269-276. | |
| [14] | 毛文元, 宋鹏云, 邓强国, 等. 干气密封螺旋槽激光加工工艺的ACE法优化 [J]. 工程科学与技术, 2021, 53 (2): 195-202. |
| MAO Wenyuan, SONG Pengyun, DENG Qiangguo, et al. Optimization of Laser Machining Process of Dry Gas Seal Spiral Groove by ACE Method[J]. Engineering Science and Technology, 2021, 53 (2): 195-202. | |
| [15] | 王衍, 王英尧, 肖喻丰, 等. 基于有序造型设计的干气密封超快激光精密加工 [J]. 材料导报, 2022, 36 (5): 44-52. |
| WANG Yan, WANG Yingyao, XIAO Yufeng, et al. Ultrafast Laser Precision Machining of Dry Gas Seals Based on Ordered Modeling Design [J]. Materials Guide, 2022, 36 (5): 44-52. | |
| [16] | 王衍, 孔康杰, 何一鸣, 等. 干气密封端面型槽可控激光制备的参数模型及实验验证[J]. 湖南大学学报(自然科学版), 2023, 50 (10): 142-150. |
| WANG Yan, KONG Kangjie, HE Yiming, et al. Parametric Modeling and Experimental Validation of Controlled Laser Preparation of Dry Gas Seal End Face Grooves[J]. Journal of Hunan University (Natural Science Edition), 2023, 50 (10): 142-150. | |
| [17] | 焦浩文, 陈冰, 罗良, 等.纳秒激光加工2.5维Cf/SiC复合材料的烧蚀孔洞特征 [J]. 中国机械工程, 2020, 31 (8): 983-990. |
| JIAO Haowen, CHEN Bing, LUO Liang, et al. Ablation Hole Characterization of 2.5-Dimensional Cf/SiC Composites Processed by Nanosecond Laser[J]. China Mechanical Engineering,2020, 31 (8): 983-990. | |
| [18] | 马桂英, 陈晓晓, 陈涛, 等. 基于双向光斑重叠率调控的耦合激光抛光碳化硅陶瓷的表面质量研究 [J]. 中国激光, 2023, 50 (16): 186-197. |
| MA Guiying, CHEN Xiaoxiao, CHEN Tao, et al. Surface Quality of Coupled Laser-polished Silicon Carbide Ceramics Based on Bidirectional Spot Overlap Rate Modulation[J]. China Laser, 2023, 50 (16): 186-197. | |
| [19] | 肖蒲庐, 陈观华, 陈宇, 等.飞秒激光织构钛合金表面形貌及润湿性研究 [J]. 中国激光, 2023, 50 (16): 175-185. |
| XIAO Pulu, CHEN Guanhua, CHEN Yu, et al. Femtosecond Laser Structuring of Titanium Alloy Surface Morphology and Wettability[J]. China Laser, 2023, 50 (16): 175-185. | |
| [20] | 符永宏, 顾亚励, 康正阳, 等.硬质合金激光毛化工艺试验研究 [J]. 激光技术, 2016, 40 (4): 512-515. |
| FU Yonghong, GU Yali, KANG Zhengyang, et al. Experimental Study on Laser Burring Process of Cemented Carbide[J]. Laser Technology, 2016, 40 (4): 512-515. | |
| [21] | 何婉盈,姚鹏,褚东凯,等.钛表面微凹凸织构的激光加工及其细胞黏附研究[J].中国激光,2022,49(10):258-272. |
| HE Wanying, YAO Peng, Chu Dongkai, et al. Laser Processing of Titanium Surface Micro-convex Weave and its Cell Adhesion[J]. China Laser, 2022, 49(10): 258-272. | |
| [22] | 韩源, 马玉平, 王海航, 等.飞秒激光刻蚀纳米金刚石涂层材料去除率的研究 [J]. 激光与光电子学进展, 2021, 58 (11): 247-255. |
| HAN Yuan, MA Yuping, WANG Haihang, et al. Femtosecond Laser Etching of Nanodiamond Coating Material Removal Rate[J]. Advances in Lasers and Optoelectronics, 2021, 58 (11): 247-255. |
| [1] | 李姗姗, 孙兴伟, 杨恒, 乔赫廷. 磁流变液环境下密封副非线性磨损行为研究[J]. 中国机械工程, 2025, 36(9): 1968-1979. |
| [2] | 杨赫然1, 2, 张培杰1, 2, 孙兴伟1, 2, 潘飞1, 2, 刘寅1, 2. 利用改进卷积神经网络的螺杆砂带磨削表面粗糙度预测[J]. 中国机械工程, 2025, 36(02): 325-332. |
| [3] | 鄢威1, 3, 王欣怡2, 3, 张华3, 朱硕2, 3, 江志刚2, 3. 考虑切削能耗和表面质量的碳纤维增强树脂基复合材料加工工艺参数优化决策[J]. 中国机械工程, 2024, 35(10): 1834-1844. |
| [4] | 徐成宇, 张万一, 张天鸿, 朱永伟. 固结磨料小工具头修形抛光钛合金叶片试验研究[J]. 中国机械工程, 2024, 35(09): 1606-1612. |
| [5] | 靳淇超1, 2, 包虎子1, 李良万3, 汪文虎3, 张锦淇1, 叶子银1, 郭磊1. DD5缓进磨削表面粗糙度和硬化率对疲劳性能影响研究[J]. 中国机械工程, 2024, 35(08): 1472-1479. |
| [6] | 贾志新, 张凯悦, 王津. 聚晶金刚石的混铁粉电火花加工方法研究[J]. 中国机械工程, 2023, 34(22): 2684-2692. |
| [7] | 王明, 董海, 王柏何, 王峥, 王加威. 2.5D Cf/SiC刹车材料浮动磨削工艺试验研究[J]. 中国机械工程, 2023, 34(20): 2434-2441. |
| [8] | 韩锐, 李秀红, 王嘉明, 李文辉, 程思源, 杨胜强, . 水平强制振动光整加工对TC4钛合金表面完整性参数的影响[J]. 中国机械工程, 2023, 34(17): 2037-2047. |
| [9] | 田龙, 黄传真, 刘盾, 姚鹏, 刘含莲, 刘雪飞. 激光辅助水射流微铣削单晶β-Ga2O3衬底的实验研究[J]. 中国机械工程, 2023, 34(13): 1559-1567. |
| [10] | 傅远韬, 文东辉, 孔凡志, 淦作昆, 成志超, . 线性液动压抛光加工的流场特性研究[J]. 中国机械工程, 2023, 34(11): 1306-1314. |
| [11] | 鲁艳军, 关伟锋, 孙佳劲, 莫睿, 伍晓宇. 基于放电修锐的粗金刚石砂轮干式镜面磨削技术[J]. 中国机械工程, 2023, 34(09): 1052-1060. |
| [12] | 王栋, 林洪旭, 赵静雯, 乔瑞勇, 张君宇, 赵睿. 高速切向车铣对18CrNiMo7-6钢表面完整性的影响[J]. 中国机械工程, 2023, 34(07): 812-820. |
| [13] | 郝宇聪, 赵韡, 杨焘, 郭鹏, . 射流束切削时在边壁约束下的直径增大变形及加工表面质量研究[J]. 中国机械工程, 2022, 33(17): 2029-2037. |
| [14] | 马廉洁, 李红双. 脆性材料机械加工表面粗糙度模型的研究进展[J]. 中国机械工程, 2022, 33(07): 757-768. |
| [15] | 张晓博, 朱栋. 长窄型薄壁叶片的套料电解加工[J]. 中国机械工程, 2022, 33(07): 797-803,810. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||