[1]ROSHCHUPKIN S, KOLESOV A, TARAKHOVSKIY A, et al. A Brief Review of Main Ideas of Metal Fused Filament Fabrication[J]. Materials Today:Proceedings, 2021, 38:2063-2067.
[2]BANKAPALLI N K, GUPTA V, SAXENA P, et al. Filament Fabrication and Subsequent Additive Manufacturing, Debinding, and Sintering for Extrusion-based Metal Additive Manufacturing and Their Applications:a Review[J]. Composites Part B:Engineering, 2023, 264:110915.
[3]DAMON J, DIETRICH S, GORANTLA S, et al. Process Porosity and Mechanical Performance of Fused Filament Fabricated 316L Stainless Steel[J]. Rapid Prototyping Journal, 2019, 25(7):1319-1327.
[4]CARMINATI M, QUARTO M, DURSO G D, et al. A Comprehensive Analysis of AISI 316L Samples Printed via FDM:Structural and Mechanical Characterization[J]. Key Engineering Materials, 2022, 926:46-55.
[5]GODEC D, CANO S, HOLZER C, et al. Optimization of the 3D Printing Parameters for Tensile Properties of Specimens Produced by Fused Filament Fabrication of 17-4PH Stainless Steel[J]. Materials, 2020, 13(3):774.
[6]CAMINERO M , ROMERO GUTIRREZ A, CHACN J M, et al. Effects of Fused Filament Fabrication Parameters on the Manufacturing of 316L Stainless-steel Components:Geometric and Mechanical Properties[J]. Rapid Prototyping Journal, 2022, 28(10):2004-2026.
[7]KEDZIORA S, DECKER T, MUSEYIBOV E, et al. Strength Properties of 316L and 17-4 PH Stainless Steel Produced with Additive Manufacturing[J]. Materials, 2022, 15(18):6278.
[8]SPILLER S, OLSYBAKK KOLSTAD S, RAZAVI N. Fatigue Behavior of 316L Stainless Steel Fabricated via Material Extrusion Additive Manufacturing[J]. Engineering Fracture Mechanics, 2023, 291:109544.
[9]JIANG Dayue, NING Fuda. Additive Manufacturing of 316L Stainless Steel by a Printing-Debinding-Sintering Method:Effects of Microstructure on Fatigue Property[J]. Journal of Manufacturing Science and Engineering, 2021, 143(9):091007.
[10]GHADIMI H, JIRANDEHI A P, NEMATI S, et al. Effects of Printing Layer Orientation on the High-frequency Bending-fatigue Life and Tensile Strength of Additively Manufactured 17-4 PH Stainless Steel[J]. Materials, 2023, 16(2):469.
[11]文磊, 罗周全, 杨仕教, 等. 岩体损伤度的点荷载强度计算及分析[J]. 工程科学学报, 2017, 39(2):175-181.
WEN Lei, LUO Zhouquan, YANG Shijiao, et al. Analyses and Calculation of Point Load Strength on Rock Mass Damage Index[J]. Chinese Journal of Engineering, 2017, 39(2):175-181.
[12]JIANG Shijie, LI Shuo, CAI Shanggang, et al. Theoretical and Experimental Study on the Fatigue Property of Material Extrusion Products and Improvement by Using Vibration Machining during Manufacturing Process[J]. International Journal of Fatigue, 2024, 182:108193.
[13]LONARD F, TAMMAS-WILLIAMS S. Metal FFF Sintering Shrinkage Rate Measurements by X-ray Computed Tomography[J]. Nondestructive Testing and Evaluation, 2022, 37(5):631-644.
[14]GONZALEZ-GUTIERREZ J, ARBEITER F, SCHLAUF T, et al. Tensile Properties of Sintered 17-4PH Stainless Steel Fabricated by Material Extrusion Additive Manufacturing[J]. Materials Letters, 2019, 248:165-168.
[15]SINGH G, MISSIAEN J M, BOUVARD D, et al. Additive Manufacturing of 17-4 PH Steel Using Metal Injection Molding Feedstock:Analysis of 3D Extrusion Printing, Debinding and Sintering[J]. Additive Manufacturing, 2021, 47:102287.
[16]屈聪, 孟智娟, 赵亮, 等. 基于变弹性模量的Ti-6Al-4V板材五点弯曲回弹预测[J]. 中国机械工程, 2022, 33(16):1991-1999.
QU Cong, MENG Zhijuan, ZHAO Liang, et al. Prediction of Five-point Bending Springback of Ti-6Al-4V Plates Based on Variable Elastic Modulus[J]. China Mechanical Engineering, 2022, 33(16):1991-1999.
[17]王勇刚, 郭一冰, 董逸君, 等. 基于分形维数的预腐蚀铝合金疲劳寿命预测[J]. 机械工程材料, 2022, 46(12):79-84.
WANG Yonggang, GUO Yibing, DONG Yijun, et al. Fatigue Life Prediction of Pre-corroded Aluminum Alloy Based on Fractal Dimension Method[J]. Materials for Mechanical Engineering, 2022, 46(12):79-84.
|