Previous Articles Next Articles
WU Jinhui1,2;TAO Yourui1,2
Online:
2020-09-25
Published:
2020-10-07
吴锦辉1,2;陶友瑞1,2
基金资助:
CLC Number:
WU Jinhui1,2;TAO Yourui1,2. Review on Research Status of Positioning Accuracy Reliability of Industrial Robots[J]. China Mechanical Engineering, DOI: 10.3969/j.issn.1004-132X.2020.18.005.
吴锦辉1,2;陶友瑞1,2. 工业机器人定位精度可靠性研究现状综述[J]. 中国机械工程, DOI: 10.3969/j.issn.1004-132X.2020.18.005.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.cmemo.org.cn/EN/10.3969/j.issn.1004-132X.2020.18.005
[1]盛秀婷. 国内工业机器人可靠性研究综述[J]. 电子产品可靠性与环境试验, 2017, 35(6):58-61.
SHENG Xiuting. Review of Reliability Research on Domestic Industrial Robots[J]. Electronic Product Reliability and Environmental Testing, 2017, 35(6):58-61. [2]王田苗, 陶永. 我国工业机器人技术现状与产业化发展战略[J]. 机械工程学报, 2014, 50(9):1-13. WANG Tianmiao, TAO Yong. Research Status and Industrialization Development Strategy of Chinese Industrial Robot[J]. Journal of Mechanical Engineering, 2014, 50(9):1-13. [3]徐扬生, 阎镜予. 机器人技术的新进展[J]. 集成技术, 2012, 1(1):2-5. XU Yangsheng, YAN Jingyu. New Developments in Robotics[J]. Integration Technology, 2012, 1(1):2-5. [4]王海芳, 张恒, 皇甫一樊, 等. 码垛机器人运动精度可靠性及其灵敏度分析[J]. 中国工程机械学报, 2016, 14(6):475-480. WANG Haifang, ZHANG Heng, HUANGFU Yifan, et al. Reliability and Sensitivity Analysis on Motional Precision for Palletizing Robots[J]. Chinese Journal of Engineering Machinery, 2016, 14(6):475-480. [5]周炜, 廖文和, 田威, 等. 基于粒子群优化神经网络的机器人精度补偿方法研究[J]. 中国机械工程, 2013, 24(2):174-179. ZHOU Wei, LIAO Wenhe, TIAN Wei, et al. Method of Industrial Robot Accuracy Compensation Based on Particle Swarm Optimization Neural Network[J]. China Mechanical Engineering, 2013, 24(2):174-179. [6]杨文韬, 詹军, 佘勇, 等. 工业机器人绝对定位精度优化方法综述[J]. 表面工程与再制造, 2019, 19(2):28-32. YANG Wentao, ZHAN Jun, SHE Yong, et al. Review of Optimization Methods for Absolute Positioning Accuracy of Industrial Robots[J]. Surface Engineering and Remanufacturing, 2019, 19(2):28-32. [7]WU J, ZHANG D, LIU J, et al. A Computational Framework of Kinematic Accuracy Reliability Analysis for Industrial Robots[J]. Applied Mathematical Modelling, 2020, 82:189-216. [8]WU J, HAN X, TAO Y. Kinematic Response of Industrial Robot with Uncertain-but-bounded Parameters Using Interval Analysis Method[J]. Journal of Mechanical Science and Technology, 2019, 33(1):333-340. [9]孙志礼, 杨强, 闫明, 等. 3-RPS并联机器人运动可靠性仿真研究[J]. 机械科学与技术, 2007, 26(6):780-783. SUN Zhili, YANG Qiang, YAN Ming, et al. Simulation Research on Kinematics Reliability of 3-RPS Parallel Robot[J]. Mechanical Science and Technology, 2007, 26(6):780-783. [10]王海芳, 皇甫一樊, 张恒, 等. 两种典型串、并联机器人速度精度可靠性分析[J]. 中国工程机械学报, 2019, 17(2):166-171. WANG Haifang, HUANGFU Yifan, ZHANG Heng, et al. Speed Accuracy Reliability Analysis of Two Typical Serial and Parallel Robots[J]. Chinese Journal of Engineering Machinery, 2019, 17(2):166-171. [11]高涵, 张明路, 张小俊, 等. 机械臂绝对定位精度标定关键技术综述[J]. 计算机应用研究, 2017, 34(9):2570-2576. GAO Han, ZHANG Minglu, ZHANG Xiaojun, et al. Review on Key Technology of Manipulator Absolute Positioning Accuracy Calibration[J]. Application Research of Computers, 2017, 34(9):2570-2576. [12]MESSAY T, ORDONEZ R, MARCIL E. Computationally Efficient and Robust Kinematic Calibration Methodologies and Their Application to Industrial Robots[J]. Robotics and Computer-integrated Manufacturing, 2016, 37:33-48. [13]刘常杰, 解成超, 叶声华. 工业机器人坐标测量系统实时校准补偿技术[J]. 电子·激光, 2011, 22(1):86-90. LIU Changjie, XIE Chengchao, YE Shenghua. Study on Real-time Calibration and Compensation of the Coordinate Measurement System for Industry Robot[J]. Journal of Optoelectronics·Laser, 2011, 22(1):86-90. [14]ULRICH M, LUX G, PIPREK T. Analysis and Visualisation of the Positioning Accuracy and Underlying Effects of Industrial Robots[J]. Advanced Materials Research, 2014, 1018: 15-22. [15]周炜, 廖文和, 田威, 等. 面向飞机自动化装配的机器人空间网格精度补偿方法研究[J]. 中国机械工程, 2012, 23(19):2306-2311. ZHOU Wei, LIAO Wenhe, TIAN Wei, et al. Robot Accuracy Compensation Method of Spatial Grid for Aircraft Automatic Assembly[J]. China Mechanical Engineering, 2012, 23(19):2306-2311. [16]MIOMIR V, BRANISLAV B. Accuracy of the Robot Positioning and Orientation Assessed via Its Manufacturing Tolerances[J]. Mechanism and Machine Theory, 1995, 30(1):11-32. [17]SONG Y, WANG H, GAO W, et al. Dynamic Deformation Analysis of a Spot Welding Robot under High Speed and Heavy Load Working Condition[C]∥International Conference on Robotics and Biomimetics. New York, 2013:2043-2048. [18]CHEN S, TANG J, LUO C, et al. Nonlinear Dynamic Characteristics of Geared Rotor Bearing Systems with Dynamic Backlash and Friction[J]. Mechanism and Machine Theory, 2011, 46(4):466-478. [19]ERKAYA S. Effects of Joint Clearance on Motion Accuracy of Robotic Manipulators[J]. Journal of Mechanical Engineering, 2017, 64(2):82-94. [20]BITTENCOURT A C, AXELSSON P. Modeling and Experiment Design for Identification of Wear in a Robot Joint under Load and Temperature Uncertainties Based on Friction Data[J]. IEEE/ASME Transactions on Mechatronics, 2013, 19(5):1694- 1706. [21]PANDEY M D, ZHANG X. System Reliability Analysis of the Robotic Manipulator with Random Joint Clearances[J]. Mechanism and Machine Theory, 2012, 58(3):137-152. [22]WANG J, ZHANG J, DU X. Hybrid Dimension Reduction for Mechanism Reliability Analysis with Random Joint Clearances[J]. Mechanism and Machine Theory, 2011, 46(10):1396-1410. [23]ZHU J, TING K. Uncertainty Analysis of Planar and Spatial Robots with Joint Clearances[J]. Mechanism and Machine Theory, 2000, 35(9):1239-1256. [24]WU J, ZHANG D, LIU J, et al. A Moment Approach to Positioning Accuracy Reliability Analysis for Industrial Robots[J]. IEEE Transactions on Reliability, 2020, 69(2):699-714. [25]ZHANG D, HAN X. Kinematic Reliability Analysis of Robotic Manipulator[J]. Journal of Mechanical Design, 2019, 142(4):044502. [26]KIM J, SONG W, KANG B. Stochastic Approach to Kinematic Reliability of Open-loop Mechanism with Dimensional Tolerance[J]. Applied Mathematical Modelling, 2010, 34(5):1225-1237. [27]许昌瑀, 董惠敏, 王承刚, 等. 关节间隙对机械臂末端定位精度的影响研究[J]. 制造业自动化, 2017, 39(5):44-48. XU Changyu, DONG Huimin, WANG Chenggang, et al. Study on Kinematic Positioning Error of Manipulator Caused by Joint Clearance[J]. Manufacturing Automation, 2017, 39(5):44-48. [28]WU W, RAO S. Uncertainty Analysis and Allocation of Joint Tolerances in Robot Manipulators Based on Interval Analysis[J]. Reliability Engineering and System Safety, 2007, 92(1):54-64. [29]RAO S, BHATTI P. Probabilistic Approach to Manipulator Kinematics and Dynamics[J]. Reliability Engineering and System Safety, 2001, 72(1):47-58. [30]WANG Z, WANG Z, YU S, et al. Time-dependent Mechanism Reliability Analysis Based on Envelope Function and Vine-copula Function[J]. Mechanism and Machine Theory, 2019, 134:667-684. [31]文瑞桥, 杨梦鸥, 刘涛, 等. 机器人的运动时变可靠性分析[J]. 工程设计学报, 2018, 25(1):50-55. WEN Ruiqiao, YANG Mengou, LIU Tao, et al. Time-dependent Kinematic Reliability Analysis of Robot Manipulators[J]. Chinese Journal of Engineering Design, 2018, 25(1):50-55. [32]王伟, 王进, 陆国栋. 基于四阶矩估计的机器人运动可靠性分析[J]. 浙江大学学报(工学版), 2018, 52(1):1-7. WANG Wei, WANG Jin, LU Guodong. Reliability Analysis of Manipulator Based on Fourth-moment Estimation[J]. Journal of Zhejiang University(Engineering Science), 2018, 52(1):1-7. [33]张春宜, 宋鲁凯, 费成巍, 等. 柔性机构动态可靠性分析的先进极值响应面方法[J]. 机械工程学报, 2017, 53(7):47-54. ZHANG Chunyi, SONG Lukai, FEI Chengwei, et al. Advanced Extremum Response Surface Method for Dynamic Reliability Analysis on Flexible Mechanism[J]. Journal of Mechanical Engineering, 2017, 53(7):47-54. [34]王铁军. 基于ADAMS的串联机器人运动可靠性仿真[D]. 沈阳:东北大学, 2006. WANG Tiejun. Motion Reliability Simulation Based on ADAMS of a Serial-link Robot[D]. Shenyang:Northeastern University, 2006. [35]李怀政, 陈启愉, 张华伟, 等. 基于ADAMS/Insight的SCARA机器人机构运动可靠性研究[J]. 机械设计与研究, 2018, 34(3):63-66. LI Huaizheng, CHEN Qiyu, ZHANG Huawei, et al. Analysis of Kinematic Reliability for SCARA Robots Mechanism Based on ADAMS/Insight[J]. Machine Design and Research, 2018, 34(3):63-66. [36]姜毅. 基于虚拟样机技术的6R工业机器人可靠性分析[D]. 芜湖:安徽工程大学, 2017. JIANG Yi. The Reliability Analysis of 6R Industrial Robot Based on Virtual Prototype Technology[D]. Wuhu:Anhui Polytechnic University, 2017. [37]VEITSCHEGGER W K, WU C H. Robot Calibration and Compensation[J]. IEEE Journal of Robotics & Automation 1988, 4(6):643-656. [38]ZHONG X, LEWIS M J, NNAGY F L. Inverse Robot Calibration Using Artificial Neural Networks[J]. Engineering Applications of Artificial Intelligence, 1996, 9(1):83-93. [39]NUBIOLA A, BONEV I A. Absolute Calibration of an ABB IRB 1600 Robot Using a Laser Tracker[J]. Robotics and Computer-integrated Manufacturing, 2013, 29(1):236-245. [40]JANG J H, KIM S H, KWAK Y K. Calibration of Geometric and Non-geometric Errors of an Industrial Robot[J]. Robotica, 2001, 19(3):311-321. [41]周炜, 廖文和, 田威. 基于空间插值的工业机器人精度补偿方法理论与试验[J]. 机械工程学报, 2013, 49(3):42-48. ZHOU Wei, LIAO Wenhe, TIAN Wei. Theory and Experiment of Industrial Robot Accuracy Compensation Method Based on Spatial Interpolation[J]. Journal of Mechanical Engineering, 2013, 49(3):42-48. [42]ZENG Y, TIAN W, LIAO W. Positional Error Similarity Analysis for Error Compensation of Industrial Robots[J]. Robotics and Computer-integrated Manufacturing, 2016, 42:113-120. [43]ANGELIDIS A, VOSNIAKOS G. Prediction and Compensation of Relative Position Error along Industrial Robot End-effector Paths[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(1):63-73. [44]晏祖根, 孙立宁, 詹华群. 基于实时误差补偿的机器人系统研究[J]. 中国机械工程, 2007,18(11):1299-1303. YAN Zugen, SUN Lining, ZHAN Huaqun. Research on High-speed High-precision Robot Based on Real-time Error Compensation[J]. China Mechanical Engineering, 2007,18(11):1299-1303. [45]GATLA C S, LUMIA R, WOOD J E, et al. An Automated Method to Calibrate Industrial Robots Using a Virtual Closed Kinematic Chain[J]. IEEE Transactions on Robotics, 2007, 23(6):1105-1116. [46]SHI X, ZHANG F, QU X, et al. An Online Real-time Path Compensation System for Industrial Robots Based on Laser Tracker[J]. International Journal of Advanced Robotic Systems, 2016, 13(5):1-14. [47]PAN Z, HUI Z. Improving Robotic Machining Accuracy by Real-time Compensation[C]∥ICCAS-SICE. Fukuoka, 2009:4289-4294. [48]WANG J, HUI Z, FUHLBRIGGE T. Improving Machining Accuracy with Robot Deformation Compensation[C]∥ IEEE/RSJ International Conference on Intelligent Robots & Systems. St. Louis, 2009:3826-3831. [49]KHOSLA P K, KANADE T. Real-time Implementation and Evaluation[J]. IEEE Transactions on Robotics & Automation, 2002, 5(2):245-253. |
[1] | JIANG Jiguang, HOU Jue, SU Chengzhi, BA Qijiao, TIAN Aixin, XU Mingyu. Research on Optimal Pose Set Planning Method under Physical Constraint Robot Kinematics Calibration [J]. China Mechanical Engineering, 2024, 35(03): 472-480. |
[2] | CHEN Zhuofan, ZHOU Kun, QIN Feifei, WANG Binrui. Inverse Kinematics Solution of Robots Based on IQPSO Algorithm [J]. China Mechanical Engineering, 2024, 35(02): 293-304. |
[3] | RONG Yu, CHEN Gang, DOU Tianci, . A Multi Index Comprehensive Optimal Anti Impact Trajectory Planning Method [J]. China Mechanical Engineering, 2024, 35(02): 305-316. |
[4] | GAO Jin, CUI Haibing, FAN Tao, LI Ang, DU Zunfeng. A Structural Reliability Calculation Method Based on Adaptive Kriging Ensemble Model [J]. China Mechanical Engineering, 2024, 35(01): 83-92. |
[5] | YE Bosheng, JIN Xiongcheng, LI Han, SHAO Baiyan, LI Xiaokun, LI Siao. Robot Error Compensation Algorithm by Pseudo Target Iterative Generation [J]. China Mechanical Engineering, 2024, 35(01): 136-143. |
[6] | QU Xiaozhang, ZHANG Jiabei, ZHAI Fangzhi. Reliability-based Analysis for Two-phase Flow of Locomotive Side Wall Filtration Systems with Non-random Load Uncertainty [J]. China Mechanical Engineering, 2023, 34(15): 1881-1889. |
[7] | YANG Fei, JIANG Wei, CHEN Cheng, HUANG Zhigao, ZHOU Huamin, . Study on Infrared Heat Source-assisted Open-space Industrial Robotic FDM Equipment Design and Forming Performance [J]. China Mechanical Engineering, 2023, 34(11): 1343-1352,1385. |
[8] | ZHANG Junxin, CHEN Wei, HUANG Sikai, WU Haibin. Control Strategies for Industrial Robot Motion along Slot Based on Force and Position Hybrid Guidances [J]. China Mechanical Engineering, 2023, 34(06): 712-719,726. |
[9] | WANG Xinyuan, ZHOU Jinyu, XIE Liyang, CHENG Jinxiang. Adaptive Subdivision-Importance Sampling Method for Solving Structural Reliability [J]. China Mechanical Engineering, 2023, 34(03): 300-306,313. |
[10] | ZHAO Leilei, YU Yuewei, CAO Jianhu, GAO Shangpeng, ZHOU Changcheng, YUAN Jian. Characteristics Analysis and Parameters Matching of a Novel Seat with Quasi-zero-stiffness Nonlinear Suspension [J]. China Mechanical Engineering, 2023, 34(01): 36-46. |
[11] | TUO Junbo, PENG Qiuyuan, ZHANG Xianmin, LI Congbo. Energy Consumption Prediction Method for Industrial Robots [J]. China Mechanical Engineering, 2022, 33(22): 2727-2732,2740. |
[12] | YU Hanlin, LUO Yabo. Dual Center Logistics Path Planning of Blending Workshops [J]. China Mechanical Engineering, 2022, 33(21): 2531-2537. |
[13] | LIU Huailan, ZHAO Wenjie, LI Shizhuang, YUE Peng, MA Baorui. Construction Method of Virtual-real Drive Systems for Robots in Digital Twin Workshops [J]. China Mechanical Engineering, 2022, 33(21): 2623-2632. |
[14] | WANG Qiao, DU Xuesong, SONG Chaosheng, ZHU Caichao, SUN Jianquan, LIAO Delin. Research on Accelerated Life Test Method of Harmonic Reducers [J]. China Mechanical Engineering, 2022, 33(19): 2317-2324. |
[15] | CHEN Dongning, HU Yanlong, YAO Chengyu, WANG Kuantong, MA Lei, . Multi-dimensional Dynamic Bayesian Network and Its Importance Measure Analysis Method [J]. China Mechanical Engineering, 2022, 33(19): 2340-2346. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||