Previous Articles Next Articles
MA Fei;HUANG Hui;XU Xipeng
Online:
2019-03-10
Published:
2019-03-07
马飞;黄辉;徐西鹏
基金资助:
CLC Number:
MA Fei;HUANG Hui;XU Xipeng. State Overview and Technology Analysis of Biomachining[J]. China Mechanical Engineering.
马飞;黄辉;徐西鹏. 生物去除加工现状综述及其技术分析[J]. 中国机械工程.
[1]UNO Y, KANEEDA T, YOKOMIZO S. Fundamental Study on Biomachining (Machining of Metals by Thiobacillus Ferrooxidans)[J]. JSME International Journal, Series C: Dynamics, Control, Robotics, Design and Manufacturing, 1996, 39(4): 837-842. [2]DIAZ-TENA E, BARONA A, GALLASTEGUI G, et al. Biomachining: Metal Etching via Microorganisms[J]. Critical Reviews in Biotechnology, 2017, 37(3): 323-332. [3]DAZ-TENA E, ROJO N, GURTUBAY L, et al. Biomachining: Preservation of Acidithiobacillus Ferrooxidans and Treatment of the Liquid Residue[J]. Engineering in Life Sciences, 2017, 17(4): 382-391. [4]DAZ-TENA E, GALLASTEGUI G, HIPPERDINGER M, et al. New Advances in Copper Biomachining by Iron-oxidizing Bacteria[J]. Corrosion Science, 2016, 112: 385-392. [5]IMRAN M, SARAGIH A S, SAHAR M S U, et al. Digital Maskless Lithography Capabilities for Surface Texturing with Biomachining[J]. The International Journal of Advanced Manufacturing Technology, 2017, 89(9/12): 3709-3719. [6]XENOFONTOS E, FEIDIOU A, CONSTANTINOU M, et al. Copper Biomachining Mechanisms Using the Newly Isolated Acidithiobacillus Ferrooxidans B1[J]. Corrosion Science, 2015, 100: 642-650. [7]MUHAMMAD I, ULLAH S M S, HAN D S, et al. Selection of Optimum Process Parameters of Biomachining for Maximum Metal Removal Rate[J]. International Journal of Precision Engineering and Manufacturing—Green Technology, 2015, 2(4): 307-313. [8]MUHAMMAD I, KO T J. Escalation of Metal Removal Rate of Biomachining by Controlling Various Process Parameters[J]. Korean Society of Precision Engineering, 2014, 10: 141-142. [9]SUWANDI D, WHULANZA Y, ISTIYANTO J. Visible Light Maskless Photolithography for Biomachining Application[J]. Applied Mechanics and Materials, 2014, 493: 552-557. [10]DAZ-TENA E, RODRGUEZ-EZQUERRO A, MARCAIDE L N L D L, et al. A Sustainable Process for Material Removal on Pure Copper by Use of Extremophile Bacteria[J]. Journal of Cleaner Production, 2014, 84(1): 752-760. [11]OLSON G J, BRIERLEY J A, BRIERLEY C L. Bioleaching Review Part B: Progress in Bioleaching: Applications of Microbial Processes by the Minerals Industries[J]. Applied Microbiology and Biotechnology, 2003, 63(3): 249-257. [12]COLMER A R, HINKLE M E. The Role of Microorganisms in Acid Mine Drainage: a Preliminary Report[J]. Science, 1947, 106(2751): 253-256. [13]WAKSMAN S A, JOFFE J S. Microrganisms Concerned in the Oxidation of Sulfur in the Soil: Ⅱ. Thiobacillus Thiooxidans, a New Sulfur-oxidizing Organism Isolated from the Soil[J]. Journal of Bacteriology, 1922, 7(2): 239-256. [14]BRYNER L C, JAMESON A K. Microorganisms in Leaching Sulfide Minerals[J]. Applied Microbiology, 1958, 6(4): 281-287. [15]ZIMMERLEY S R, WILSON D G, PRATER J D. Cyclic Leaching Process Employing Iron Oxidizing Bacteria: US, 2829964[P]. 1958-04-08. [16]UNO Y, KANEEDA T, YOKOMIZO S, et al. Fundamental Study on Electric Field Assisted Biomachining[J]. Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 1996, 62(4): 540-543. [17]ZHANG D Y, LI Y Q. Possibility of Biological Micromachining Used for Metal Removal[J]. Science in China(Series C: Life Sciences), 1998, 41(2): 151-156. [18]ZHANG D Y, LI Y Q. Studies on Kinetics and Thermodynamics of Biomachining Pure Copper[J]. Science in China(Series C: Life Sciences), 1999, 42(1): 57-62. [19]YANG Y, WANG X B, LIU Y D, et al. Techniques for Micromachining Using Thiobacillus Ferrooxidans Based on Different Culture Medium[J]. Applied Mechanics and Materials, 2009, 16/19: 1053-1057. [20]HOCHENG H, CHANG J, JADHAV U U. Micromachining of Various Metals by Using Acidithiobacillus Ferrooxidans 13820 Culture Supernatant Experiments[J]. Journal of Cleaner Production, 2012, 20(1): 180-185. [21]KUMADA M, KAWAKADO T, KOBUCHI S, et al. Investigations of Fine Biomachining of Metals by Using Microbially Influenced Corrosion—Differences between Steel and Copper in Metal Biomachining by Using Thiobacillus Ferrooxidans[J]. Zairyo to Kankyo/Corrosion Engineering, 2001, 50(9): 411-417. [22]OKADA A, UNO Y, HISANO T, et al. Study on Material Removal Mechanism and Improvement of Machining Speed in Biomachining[J]. Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2002, 68(12): 1585-1589. [23]刘玉德,王西彬,蒋放,等. 基于生物刻蚀原理制作微小齿轮结构[J]. 北京工商大学学报(自然科学版), 2005, 23(5): 21-23. LIU Yude, WANG Xibin, JIANG Fang, et al. Micro Gear Structure Fabricated Based on Principle of Biological Etch[J]. Journal of Beijing Technology and Business University (Natural Science Edition), 2005, 23(5): 21-23. [24]JOHNSON D, WARNER R, SHIH A J. Surface Roughness and Material Removal Rate in Machining Using Microorganisms[J]. Journal of Manufacturing Science and Engineering, 2007, 129(1): 223-227. [25]LILOVA K, KARAMANEV D, FLEMMING R L, et al. Biological Oxidation of Metallic Copper by Acidithiobacillus Ferrooxidans[J]. Biotechnology and Bioengineering, 2007, 97(2): 308-316. [26]ISTIYANTO J, KO T J, YOON I. A Study on Copper Micromachining Using Microorganisms[J]. International Journal of Precision Engineering and Manufacturing, 2010, 11(5): 659-664. [27]ISTIYANTO J, KIM M Y, KO T J. Profile Characteristics of Biomachined Copper[J]. Microelectronic Engineering, 2011, 88(8): 2614-2617. [28]JADHAV U U, HOCHENG H, WENG W. Innovative Use of Biologically Produced Ferric Sulfate for Machining of Copper Metal and Study of Specific Metal Removal Rate and Surface Roughness during the Process[J]. Journal of Materials Processing Technology, 2013, 213(9): 1509-1515. [29]ISTIYANTO J, SARAGIH A, KO T J. Metal Based Micro-feature Fabrication Using Biomachining Process[J]. Microelectronic Engineering, 2012, 98: 561-565. [30]JADHAV U, HOCHENG H. Use of Aspergillus Niger 34770 Culture Supernatant for Tin Metal Removal[J]. Corrosion Science, 2014, 82: 248-254. [31]ISTIYANTO J, TAUFIQURRAKHMAN M, KISWANTO G, et al. Inclination Angle Effect on Surface of Copper in Biomachining[J]. Applied Mechanics and Materials, 2014, 660: 23-27. [32]DAZ-TENA E, RODRGUEZ-EZQUERRO A, MARCAIDE L N L D L, et al. Use of Extremophiles Microorganisms for Metal Removal[J]. Procedia Engineering, 2013, 63: 67-74. [33]LIU Y D, WANG X B, YANG Y, et al. Processing Micro-gear Based on Bio-etching Method[J]. Applied Mechanics and Materials, 2009, 16/19: 120-123. [34]HOCHENG H, CHANG J H, HSU H S, et al. Metal Removal by Acidithiobacillus Ferrooxidans through Cells and Extra-cellular Culture Supernatant in Biomachining[J]. CIRP Journal of Manufacturing Science and Technology, 2012, 5(2): 137-141. [35]CHANG J H, HOCHENG H, CHANG H Y, et al. Metal Removal Rate of Thiobacillus Thiooxidans without Pre-secreted Metabolite[J]. Journal of Materials Processing Technology, 2008, 201(1/3): 560-564. [36]HOCHENG H, JADHAV U U, CHANG J H. Biomachining Rates of Various Metals by Acidithiobacillus Thiooxidans[J]. International Journal of Surface Science and Engineering, 2012, 6(1/2): 101-111. [37]TING Y P, KUMAR A S, RAHMAN M, et al. Innovative Use of Thiobacillus Ferrooxidans for the Biological Machining of Metals[J]. Acta Biotechnologica, 2000, 20(20): 87-96. [38]MIYANO Y, KAMIYA O, LOTFI C, et al. Fundamental Studies on Biomachining of Carbon Steel by Iron Oxidizing Bacteria[J]. Transactions of JWRI, 2003, 32(1): 239-242. [39]MIYANO Y, TSUBONUMA T, SREEKMARI K R, et al. Biomachining of Stainless Steel Using Bacteria[D]. Osaka: Osaka University, 2003, 32(1): 183-187. [40]刘玉德,王西彬,石文天,等. 氧化硫硫杆菌和氧化亚铁硫杆菌生物刻蚀加工的协同作用[J]. 北京理工大学学报, 2010, 30(9): 1028-1031. LIU Yude, WANG Xibin, SHI Wentian, et al. Synergism Effect of Thiobacillus Thiooxidans and Thiobacillus Ferrooxidans on the Bio-etching[J]. Transactions of Beijing Institute of Technology, 2010, 30(9): 1028-1031. [41]李松梅,王彦卿,刘建华,等. 氧化亚铁硫杆菌和氧化硫硫杆菌的协同作用对Q235钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2009, 29(3): 182-186. LI Songmei, WANG Yanqing, LIU Jianhua, et al. Synergism Effect of Thiobacillus Ferrooxidans and Thiobacillus Thiooxidan on the Corrosion Behavior of Steel Q235[J]. Journal of Chinese Society for Corrosion and Protection, 2009, 29(3): 182-186. [42]XIN B, ZHANG D, ZHANG X, et al. Bioleaching Mechanism of Co and Li from Spent Lithium-ion Battery by the Mixed Culture of Acidophilic Sulfur-oxidizing and Iron-oxidizing Bacteria[J]. Bioresource Technology, 2009, 100(24): 6163-6169. [43]LIANG G, MO Y, ZHOU Q. Novel Strategies of Bioleaching Metals from Printed Circuit Boards(PCBs) in Mixed Cultivation of Two Acidophiles[J]. Enzyme and Microbial Technology, 2010, 47(7): 322-326. [44]WANG J, BAI J, XU J, et al. Bioleaching of Metals from Printed Wire Boards by Acidithiobacillus Ferrooxidans and Acidithiobacillus Thiooxidans and Their Mixture[J]. Journal of Hazardous Materials, 2009, 172(2/3): 1100-1105. [45]SILVERMAN M P, LUNDGREN D G. Studies on the Chemoautotrophic Iron Bacterium Ferrobacillus Ferrooxidans Ⅱ: Manometric Studies[J]. Journal of Bacteriology, 1959, 78(3): 326-331. [46]LEATHEN W W, BRALEY S A. A Medium for the Study of the Bacterial Oxidation of Ferrous Iron[J]. Science, 1951, 114(2959): 280-281. [47]庄贺,沈俊剑,黎俊,等. 氧化亚铁硫杆菌的分离鉴定及培养条件优化[J]. 微生物学通报, 2013, 40(7): 1131-1137. ZHUANG He, SHEN Junjian, LI Jun, et al. Isolation and Identification of Thiobacillus Ferrooxidans Isolation and Identification of Thiobacillus Ferrooxidans and Optimization of Its Culture Condition[J]. Microbiology China, 2013,40(7): 1131-1137. [48]王世梅,周立祥. 提高氧化亚铁硫杆菌和氧化硫硫杆菌平板检出率的方法:双层平板法[J]. 环境科学学报, 2005, 25(10): 1418-1420. WANG Shimei, ZHOU Lixiang. A Renovated Approach for Increasing Colony Count Efficiency of Thiobacillus Ferrooxidans and Thiobacillus Thiooxidans: Double-layer Plates[J]. Acta Scientiae Circumstantiae, 2005, 25(10): 1418-1420. [49]冯守帅,杨海麟,高凯,等. 极端嗜酸硫杆菌高效筛选、高密度发酵及保藏方法的研究[J]. 微生物学通报, 2014, 41(12): 2565-2573. FENG Shoushuai, YANG Hailin, GAO Kai, et al. The Study on Efficient Screening, High-density Fermentation and Preservation Methods for Extremely Acidithiobacillus Sp.[J]. Microbiology China, 2014, 41(12): 2565-2573. [50]SAND W, GEHRKE T, JOZSA P, et al. (Bio)Chemistry of Bacterial Leaching—Direct vs. Indirect Bioleaching[J]. Hydrometallurgy, 2001, 59(2/3): 159-175. |
[1] | ZHANG Qicong, JIANG Chen, YE Hui, SHEN Lingxin, JIAO Mengdie. Design and Processing Research of Dynamic Pressure Assisted Non-Newtonian Fluid Polishing Tools [J]. China Mechanical Engineering, 2023, 34(23): 2805-2811,2823. |
[2] | JIA Zhixin, ZHANG Kaiyue, WANG Jin. Study on EDM of PCD by Mixing Iron Powders [J]. China Mechanical Engineering, 2023, 34(22): 2684-2692. |
[3] | CHI Yulun, WU Zixuan. Correction Model and Experimental Study of Removal Rate in Tangential Cylindrical Grinding Based on Grinding Thermal Deformation Analysis [J]. China Mechanical Engineering, 2023, 34(15): 1778-1788. |
[4] | LI Hongyu, HUANG Xiangming, MING Yang, LI Xiyang, ZENG Qing, ZHOU Dongdong. Simulation and Experimental Study of Magnetic Field-assisted Shear Thickening Fluid Polishing for Cemented Carbide Blades [J]. China Mechanical Engineering, 2023, 34(06): 650-659. |
[5] | YANG Heran, HE Yuan, SUN Xingwei, DONG Zhixu, QIAO Heting. Development of Belt Grinding Devices for Screw Rotor and Prediction of Material Removal Rates [J]. China Mechanical Engineering, 2021, 32(17): 2055-2062. |
[6] | WU Ke, LU Xinming, MEHMOOD Awais, ZHOU Libo, YUAN Julong. Fixed Abrasive Based Self-rotation Grinding for Single Crystal Sapphire [J]. China Mechanical Engineering, 2021, 32(16): 2002-2007,2015. |
[7] |
LI Junliang;WANG Shilong;WANG Sibao;XIA Changjiu.
Energy Consumption Model of Hobbing Machine Tools Based on Workpiece Material Removal Rate
[J]. China Mechanical Engineering, 2020, 31(21): 2626-2631.
|
[8] | XI Fengfei;ZENG Xi;JI Shiming;CHEN Guoda. Cobalt-based Alloy Material Removing Method under Photocatalytic Conditions [J]. China Mechanical Engineering, 2020, 31(06): 662-669. |
[9] | Huang Yishen, Zhao Bingshan, Huang Shuiquan, You Hongwu, Xu Xuefeng. Pulse Electromagnetic Field-assisted Chemical Mechanical Polishing Utilizing Magnetic Composite Abrasives Slurry and Its Polishing Performance [J]. China Mechanical Engineering, 2014, 25(9): 1175-1179,1238. |
[10] | Xue Rongyuan, Liu Zhidong, Wang Xiangzhi, Qiu Mingbo, Tian Zongjun. Research on Titanium Alloy TC4 Electrical-discharge Machining Characteristics Using Oil-in-water Emulsion [J]. China Mechanical Engineering, 2014, 25(9): 1164-1168. |
[11] | Li Xiefeng, Liu Zhidong, Zhang Xudong, Li Lingling. Research on Efficient Cutting and Low Wire Wear Technology of HSWEDM [J]. China Mechanical Engineering, 2014, 25(1): 71-76. |
[12] | WANG Xu-Ti, HU Hui, LIANG Yan-De, XU Wen-Ji. Finite Element Simulation of Small-hole on Titanium Alloy Drilled by EDM [J]. China Mechanical Engineering, 2013, 24(13): 1738-1742,1748. |
[13] | WANG Hong-1, 2, DAI Yu-Xin-1, 3, HU Jun-1, 4, HU Shi-Xiong-4. Prediction Algorithm for Rotational Speed of Workpiece's Revolving Shaft with Numerical Control Double Surface Grinder [J]. China Mechanical Engineering, 2013, 24(10): 1315-1319. |
[14] | YANG Hou-Chuan-1, 2, YUAN Shu-1, CUI Ji-1, TANG Xiao-Liang-1. #br# Milling Parameter Optimization Based on Tool Life and Material Removal Rate for AerMet100 Steel [J]. China Mechanical Engineering, 2012, 23(19): 2280-2285. |
[15] | Zhang Xiuli;Xie Chaohui;Zhang Heng. An Experimental Investigation into the Machining Quality of Composites Influenced by Fiber Orientation [J]. J4, 2009, 20(21): 0-2627. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||