[1]ZHAO Dan, GAO Chunxiao, ZHOU Zhao, et al. Fatigue Life Prediction of the Wire Rope Based on Grey Theory under Small Sample Condition[J]. Engineering Failure Analysis, 2020, 107:104237.
[2]ZHANG Zhe, YANG Bing, WANG Yuedong, et al. A Hybrid Distribution Characteristics of Equivalent Structural Stress Method for Fatigue Evaluation of Welded Structures[J]. International Journal of Fatigue, 2024, 179:108057.
[3]ELLYIN F, KUJAWSKI D. Plastic Strain Energy in Fatigue Failure[J]. Journal of Pressure Vessel Technology, 1984,106(4), 342-347.
[4]HU Yifeng, SHI Junping, CAO Xiaoshan, et al. Low Cycle Fatigue Life Assessment Based on the Accumulated Plastic Strain Energy Density[J]. Materials, 2021, 14(9):2372.
[5]崔海涛,钱春华.镍基高温合金的热机械疲劳寿命预测模型研究[J].中国机械工程,2024,35(1):67-73.
CUI Haitao, QIAN Chunhua. Research on Thermo-mechanical Fatigue Life Prediction Model of Ni-base Superalloy[J]. China Mechanical Engineering, 2024,35(1):67-73.
[6]INCE A, GLIKA G. A Modification of Morrow and Smith-Watson-Topper Mean Stress Correction Models[J]. Fatigue & Fracture of Engineering Materials & Structures, 2011, 34(11):854-867.
[7]ZHOU Jie, YANG Hongzhong, PENG Zhaochun. Fatigue Life Prediction of Turbine Blades Based on a Modified Equivalent Strain Model[J]. Journal of Mechanical Science and Technology, 2017, 31:4203-4213.
[8]LIU Xi, WANG Rongqiang, HU Dianyin, et al. Reliability-based Design Optimization Approach for Compressor Disc with Multiple Correlated Failure Modes[J]. Aerospace Science and Technology, 2021, 110:106493.
[9]王卫国. 轮盘低循环疲劳寿命预测模型和试验评估方法研究[D]. 南京:南京航空航天大学,2007.
WANG Weiguo, Research on Prediction Model for Disc LCF Life and Experiment Assessment Methodology[D]. Nanjing :Nanjing University of Aeronautics and Astronautics, 2007.
[10]KUNC R, PREBIL I. Low-cycle Fatigue Properties of Steel 42CrMo4[J]. Materials Science and Engineering:A, 2003, 345(1/2):278-285.
[11]SZUSTA S J, SEWERYN A. Experimental Study of the Low-cycle Fatigue Life under Multiaxial Loading of Aluminum Alloy EN AW-2024-T3 at Elevated Temperatures[J]. International Journal of Fatigue, 2017, 96:28-42.
[12]水丽.应变幅对一种新型镍基单晶高温合金高温低周疲劳性能的影响[J].机械工程材料,2022,46(6):31-35.
SHUI Li. Effect of Strain Amplitude on High Temperature Low Cycle Fatigue Properties of a New Nickel-based Single Crystal Superalloy[J]. Materials for Mechanical Engineering, 2022,46(6):31-35.
[13]邵贰,杨显杰,毛江徽,等.1Cr18Ni9Ti不锈钢低周疲劳随动硬化实验研究[J].核动力工程,2006(3):32-36.
SHAO Er, YANG Xianjie, MAO Jianghui,et al. Experimental Study on Low Cycle Fatigue Dynamic Hardening of 1Cr18Ni9Ti Stainless Steel[J]. Nuclear Power Engineering, 2006(3):32-36.
[14]DAS P, KHUTIA N, DEY P P, et al. Multi-objective Cyclic Plastic Modelling of Cyclic Hardening and Softening Characteristics of Nuclear Piping SA333Gr.6 Carbon Steel[J]. International Journal of Fatigue, 2024, 180:108082.
[15]HORMOZI R, BIGLARI F, NIKBIN K, Experimental and Numerical Creep-fatigue Study of Type 316 Stainless Steel Failure under High Temperature LCF Loading Condition with Different Hold Time[J]. Engineering Fracture Mechanics, 2015, 141:19-43.
[16]叶笃毅,王德俊,童小燕,等.一种基于材料韧性耗散分析的疲劳损伤定量新方法[J].实验力学,1999(1):81-89.
YE Duyi, WANG Junde, TONG Xiaoyan,et al. A New Quantitative Method for Fatigue Damage Based on Material Toughness Dissipation Analysis[J]. Journal of Experimental Mechanics, 1999(1):81-89.
[17]钟巍华,鱼滨涛,佟振峰,等.国产316LN不锈钢的室温低周疲劳行为研究[J].热加工工艺,2017,46(8):66-68.
ZHONG Weihua, YU Bintao, TONG Zhenfeng, et al. Research on Low Cycle Fatigue Behavior of Domestic 316LN Stainless Steel at Room Temperature[J]. Hot Working Technology,2017,46(8):66-68.
[18]中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. 金属材料轴向等幅低循环 疲劳试验方法:GB/T 15248—2008[S]. 北京:中国标准出版社,2008.
General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of China, The Test Method for Axial Loading Constant-amplitude Low-cycle Fatigue of Metallic Materials:GB/T 15248—2008[S]. Beijing:Standards Press of China ,2008.
|