[1]鲍久圣, 章全利, 葛世荣, 等. 煤矿井下无人化辅助运输系统关键基础研究及应用实践[J]. 煤炭学报, 2023, 48(2):1085-1098.
BAO Jiusheng, ZHANG Quanli, GE Shirong, et al. Basic Research and Application Practice of Unmanned Auxiliary Transportation System in Coal Mine[J]. Journal of China Coal Society, 2023, 48(2):1085-1098.
[2]EL-HAMID H T A, WEI Caiyong, ZHANG Yongting. Geospatial Analysis of Land Use Driving Force in Coal Mining Area:Case Study in Ningdong, China[J]. GeoJournal, 2021, 86(2):605-620.
[3]鲍久圣, 章全利, 葛世荣, 等. 煤矿井下无人化辅助运输系统关键基础研究及应用实践[J]. 煤炭学报, 2023, 48(2):1085-1098.
BAO Jiusheng, ZHANG Quanli, GE Shirong, et al. Basic Research and Application Practice of Unmanned Auxiliary Transportation System in Coal Mine[J]. Journal of China Coal Society, 2023, 48(2):1085-1098.
[4]LI Feng, JIANG Peixuan, LUO Ling, et al. Variational Eligibility Trace Meta-reinforcement Recurrent Network for Residual Life Prediction of Space Rolling Bearings[J]. Applied Soft Computing, 2023, 145:110582.
[5]李乃鹏, 蔡潇, 雷亚国, 等. 一种融合多传感器数据的数模联动机械剩余寿命预测方法[J]. 机械工程学报, 2021, 57(20):29-37.
LI Naipeng, CAI Xiao, LEI Yaguo, et al. A Model-data-fusion Remaining Useful Life Prediction Method with Multi-sensor Fusion for Machinery[J]. Journal of Mechanical Engineering, 2021, 57(20):29-37.
[6]REN Lei, CUI Jin, SUN Yaqiang, et al. Multi-bearing Remaining Useful Life Collaborative Prediction:a Deep Learning Approach[J]. Journal of Manufacturing Systems, 2017, 43:248-256.
[7]YANG Mingjin, ZHOU Wenju, SONG Tianxiang. Audio-based Fault Diagnosis for Belt Conveyor Rollers[J]. Neurocomputing, 2020, 397:447-456.
[8]LIU Yi, MIAO Changyun, LI Xianguo, et al. Research on the Fault Analysis Method of Belt Conveyor Idlers Based on Sound and Thermal Infrared Image Features[J]. Measurement, 2021, 186:110177.
[9]LIU Yi, MIAO Changyun, LI Xianguo, et al. A Dynamic Self-attention-based Fault Diagnosis Method for Belt Conveyor Idlers[J]. Machines, 2023, 11(2):216.
[10]JO J, KIM Z, SUH Y J. Remaining Useful Life Prediction Using an Ensemble Learning-based Network for a Belt Conveyor System[C]∥2023 International Conference on Artificial Intelligence in Information and Communication(ICAIIC). IEEE, 2023:863-867.
[11]LI Wei, WANG Zewen, ZHU Zhencai, et al. Design of Online Monitoring and Fault Diagnosis System for Belt Conveyors Based on Wavelet Packet Decomposition and Support Vector Machine[J]. Advances in Mechanical Engineering, 2013, 5:797183.
[12]宋亚, 夏唐斌, 郑宇, 等. 基于Autoencoder-BLSTM的涡扇发动机剩余寿命预测[J]. 计算机集成制造系统, 2019, 25(7):1611-1619.
SONG Ya, XIA Tangbin, ZHENG Yu, et al. Remaining Useful Life Prediction of Turbofan Engine Based on Autoencoder-BLSTM[J]. Computer Integrated Manufacturing Systems, 2019, 25(7):1611-1619.
[13]CHEN Dingliang, QIN Yi, WANG Yi, et al. Health Indicator Construction by Quadratic Function-based Deep Convolutional Auto-encoder and Its Application into Bearing RUL Prediction[J]. ISA Transactions, 2021, 114:44-56.
[14]雷亚国, 贾峰, 周昕, 等. 基于深度学习理论的机械装备大数据健康监测方法[J]. 机械工程学报, 2015, 51(21):49-56.
LEI Yaguo, JIA Feng, ZHOU Xin, et al. A Deep Learning-based Method for Machinery Health Monitoring with Big Data[J]. Journal of Mechanical Engineering, 2015, 51(21):49-56.
[15]SUN Chuang, MA Meng, ZHAO Zhibin, et al. Deep Transfer Learning Based on Sparse Autoencoder for Remaining Useful Life Prediction of Tool in Manufacturing[J]. IEEE Transactions on Industrial Informatics, 2019, 15(4):2416-2425.
[16]蔡伟立, 胡小锋, 刘梦湘. 基于迁移学习的刀具剩余寿命预测方法[J]. 计算机集成制造系统, 2021, 27(6):1541-1549.
CAI Weili, HU Xiaofeng, LIU Mengxiang. Prediction Method of Tool Remaining Useful Life Based on Transfer Learning[J]. Computer Integrated Manufacturing Systems, 2021, 27(6):1541-1549.
[17]ZHANG Ming, WANG Duo, LU Weining, et al. A Deep Transfer Model with Wasserstein Distance Guided Multi-adversarial Networks for Bearing Fault Diagnosis under Different Working Conditions[J]. IEEE Access, 2019, 7:65303-65318.
[18]MAO Wentao, HE Jianliang, ZUO M J. Predicting Remaining Useful Life of Rolling Bearings Based on Deep Feature Representation and Transfer Learning[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(4):1594-1608.
[19]YANG Na, ZHANG Zhenkai, YANG Jianhua, et al. A Convolutional Neural Network of GoogLeNet Applied in Mineral Prospectivity Prediction Based on Multi-source Geoinformation[J]. Natural Resources Research, 2021, 30(6):3905-3923.
[20]NHU V H, HOANG N D, NGUYEN H, et al. Effectiveness Assessment of Keras Based Deep Learning with Different Robust Optimization Algorithms for Shallow Landslide Susceptibility Mapping at Tropical Area[J]. Catena, 2020, 188:104458.
[21]LUO Yi, MESGARANI N. Conv-TasNet:Surpassing Ideal Time-frequency Magnitude Masking for Speech Separation[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2019, 27(8):1256-1266.
[22]GAD A G. Particle Swarm Optimization Algorithm and Its Applications:a Systematic Review[J]. Archives of Computational Methods in Engineering, 2022, 29(5):2531-2561.
[23]ALQUIER P, CHRIEF-ABDELLATIF B E, DERUMIGNY A, et al. Estimation of Copulas via Maximum Mean Discrepancy[J]. Journal of the American Statistical Association, 2023, 118(543):1997-2012.
[24]丁华, 杨亮亮, 杨兆建, 等. 数字孪生与深度学习融合驱动的采煤机健康状态预测[J]. 中国机械工程, 2020, 31(7):815-823.
DING Hua, YANG Liangliang, YANG Zhaojian, et al. Health Prediction of Shearers Driven by Digital Twin and Deep Learning[J]. China Mechanical Engineering, 2020, 31(7):815-823.
[25]BRODNY J, TUTAK M. Applying Computational Fluid Dynamics in Research on Ventilation Safety during Underground Hard Coal Mining:a Systematic Literature Review[J]. Process Safety and Environmental Protection, 2021, 151:373-400.
[26]GOMES A S, HALDER A, HOSSAIN M A. The Effect of Kronecker Tensor Product Values on ECG Rates:a Study on Savitzky-Golay Filtering Techniques for Denoising ECG Signals[J]. Asian Journal of Applied Science and Technology, 2023, 7(1):158-166.
[27]HU Hongping, AO Yan, YAN Huichao, et al. Signal Denoising Based on Wavelet Threshold Denoising and Optimized Variational Mode Decomposition[J]. Journal of Sensors, 2021, 2021:5599096.
[28]QIAN Yuning, YAN Ruqiang, GAO R X. A Multi-time Scale Approach to Remaining Useful Life Prediction in Rolling Bearing[J]. Mechanical Systems and Signal Processing, 2017, 83:549-567.
[29]LIU Yongbin, HE Bing, LIU Fang, et al. Remaining Useful Life Prediction of Rolling Bearings Using PSR, JADE, and Extreme Learning Machine[J]. Mathematical Problems in Engineering, 2016, 2016:8623530.
[30]YAN Mingming, WANG Xingang, WANG Bingxiang, et al. Bearing Remaining Useful Life Prediction Using Support Vector Machine and Hybrid Degradation Tracking Model[J]. ISA Transactions, 2020, 98:471-482.
[31]GUO Liang, LI Naipeng, JIA Feng, et al. A Recurrent Neural Network Based Health Indicator for Remaining Useful Life Prediction of Bearings[J]. Neurocomputing, 2017, 240(C):98-109.
[32]GUPTA M, WADHVANI R, RASOOL A. A Real-time Adaptive Model for Bearing Fault Classification and Remaining Useful Life Estimation Using Deep Neural Network[J]. Knowledge-Based Systems, 2023, 259:110070.
|